Editor's Choice


Precise non-invasive monitoring of vital signs

30 August 2023 Editor's Choice News

Scientists at Sydney Nano and the School of Physics have developed a new photonic radar system that delivers contactless, high-definition detection of vital signs. This technology, still in its infancy, could be further developed for use in ICUs and aged-care facilities. It could also be used for people with sleep apnoea or for infants where there is a concern with breathing.

Constant monitoring of vital health signs is needed in a variety of clinical environments. At present, this is mostly achieved via wired or invasive contact systems. In certain cases, however, these contact systems are not suitable for application. Camera systems have also

been used to monitor vital signs, but these systems are sensitive to skin colour and lighting conditions. The thermal cameras deployed also have limited resolution.

Scientists at the University of Sydney Nano Institute and the NSW Smart Sensing Network have now developed a photonic radar system that allows for highly precise, non-invasive monitoring. The system was demonstrated by monitoring the pauses in breathing in cane toads where the system was able to accurately detect the change in breathing.

“Photonic radar uses a light-based, photonics system – rather than traditional electronics – to generate, collect and process the radar signals. This approach allows for very wideband generation of radio frequency (RF) signals, offering highly precise and simultaneous, multiple tracking of subjects,” said lead author Ziqian Zhang, a hD student in the School of Physics.

The system combined this approach with light detection and ranging (LiDAR). The radar generated 10 GHz-wide SF RF signals in the Ka-band (26,5 to 40 GHz) to detect the respiratory activities, achieving a range of 13,7 mm with micrometre-level accuracy. This high resolution and accuracy are essential to resolve the delicate vital signs of the cane toad, even with an undersized animal cross-section. The system then used a LiDAR vital sign detection monitoring based on the same microwave photonic source, showing that LiDAR and radar could be used together as a complementary system.

This hybrid approach, radar plus LiDAR, delivered a vital sign detection system with a resolution down to six millimetres with micrometre-level accuracy, which is suitable for clinical environments.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
Four ways to enhance IoT battery performance using emulation software
Concilium Technologies Editor's Choice
Battery life affects the cost and reliability of IoT-based infrastructure and is a key purchasing consideration for consumer electronic IoT devices.

Read more...
NuWave Technologies: Excellence in electronic component procurement
NuWave Technologies Editor's Choice
Based in Randburg, Gauteng, NuWave Technologies is built on core values of integrity, honesty, transparency, and service excellence.

Read more...
Arduino platform with Analog Devices technology for flexible industrial control
Altron Arrow Editor's Choice DSP, Micros & Memory
Software-configurable systems enable industrial OEMs to deliver unprecedented flexibility to the factory floor, while simplifying product complexity.

Read more...
Accelerating RF PCB design in a 5G world
ASIC Design Services Editor's Choice Design Automation
Billions of IoT devices coming online in the coming years will require RF design capabilities that support ultra-fast 5G speeds.

Read more...
Achieving lowest cost, scalable and dynamic wireless mesh network installations
CST Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
In many situations it is desirable for sensors to be connected wirelessly in a mesh network as this saves infrastructure and cost since long cabling runs are not required.

Read more...
Residues on PCBs – Causes and remedial measures
Electronic Industry Supplies Editor's Choice Manufacturing / Production Technology, Hardware & Services
Soldering with wire and iron leaves process judgments up to individual operators, and can produce a wide variety of defects, scrap, or long-term quality issues.

Read more...