Editor's Choice


X-band radar

28 March 2025 Editor's Choice Telecoms, Datacoms, Wireless, IoT

The defence sector is constantly evolving to address the latest security challenges, one of which is the increasing prevalence of unmanned aerial vehicles (UAVs) or drones in critical areas.

X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance (see figure 1).

Drone detection and tracking: a new security imperative

The ability to detect, track and manage drones is becoming indispensable for defence operations. X-band radar systems are uniquely suited for this task, especially in scenarios like border security, critical infrastructure protection and mobile perimeter monitoring. These radar systems provide high-resolution detection capabilities, ensuring drones can be tracked with accuracy even in cluttered environments. The ability to differentiate drones from other small airborne objects is crucial as security demands grow around the globe. Phased array Active Electronically Scanned Array (AESA) radar systems operating at X-band offer an ideal balance of range, target resolution, and size, enabling these systems to detect and monitor obstacles from significant distances. X-band radars are lightweight and self-contained, which simplifies integration into aviation systems for comprehensive aerial surveillance and threat detection (see figure 2).

Some advantages of using AESA radar systems include:

• Accuracy – AESAs can track multiple targets with high angular accuracy, even when the airspace is very congested.

• Reliable – AESA radar systems offer superior reliability compared to legacy radar technologies, primarily due to their lack of moving parts, which reduces mechanical wear and failure points. Additionally, they feature a ‘soft failure’ capability, meaning that even if several array channels malfunction, the overall system performance experiences only minimal degradation.

• Fast – AESAs can transmit signal energy in microseconds, allowing the system to detect and track targets at a very high speed.

• Multi-functionality – AESA radar systems can operate in air-to-ground and air-to-air environments simultaneously.

• Environmentally stable – AESAs can see and map the ground from great distances in any weather conditions.

• Mobility – AESA radar systems are more mobile due to their sizes, lighter weight and use less power than previously used X-band radar system technologies.

• Low physical profile – AESA electronics can be realised in a planar (flat panel) antenna, allowing for low profile solutions. This AESA design approach enables planar arrays at frequencies above C-band and provides an overall smaller size, lighter weight and lower cost solution.

AESAs combined with advanced X-band BFICs are pushing the capabilities of compact radar systems. These systems, combined with integrated software-defined radios and beam-steering controllers, provide remote sensing coverage across a wide range of applications. Additionally, these solutions provide enhanced sensitivity and lower DC power consumption than traditional radar systems.

AESA radars also benefit significantly from X-band BFICs coupled with GaN and GaAs technologies, helping to enable long radar range, high-resolution, stable phase and amplitude control needed for rapid and precise beam steering. The combination of using these technologies – silicon for the BFIC, GaN and GaAs helps achieve SWaP-C principles. This low-profile, high-performance technology allows developers to create radar systems with optimised cascade performance, achieving lower RF power emissions, reduced false detections and increased dynamic range – attributes that open new avenues in aviation radar applications, while ensuring effective, energy-efficient drone tracking and threat management.

The accuracy and importance of BFICs in phased array antennas

A core component of X-band radar performance is precise phase control for each antenna element in the phased array. High-resolution phase and amplitude control enable fast, accurate beam steering, which is essential for tracking multiple objects simultaneously. Qorvo’s beamformer ICs facilitate this capability by providing independent phase shift and attenuation control, enhancing the radar’s ability to operate in complex environments with multiple moving targets.

At the core of X-band phased array radars, beamforming ICs allow precise control over each antenna element’s phase and amplitude, enabling rapid, accurate beam steering. This control is especially critical in scenarios where radar systems must distinguish between multiple, fast-moving targets in congested airspace or complex urban environments. Qorvo’s X-band Beamformer IC stands out with its quad architecture featuring dual receive outputs, and it offers independent serial ‘SPI’ control of the phase shifters and attenuators. This architecture facilitates both individual control over each channel within an IC and the daisy chaining of multiple ICs, enabling scalable radar systems that adapt to various application needs. A single positive supply further simplifies the design and reduces the overall system footprint, which is essential for low-profile deployments.

For more information contact RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
u-blox expands NORA-B2 BLE modules
RF Design Telecoms, Datacoms, Wireless, IoT
The new nRF54L chipset-based wireless modules reduce current consumption and double processing capacity, catering to diverse mass market segments.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
New GNSS passive patch antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The HP24510A from Taoglas is a stacked patch GNSS passive antenna that operates from 1215 to 1610 MHz covering the L1/L2 GNSS spectrum.

Read more...
Four ways to enhance IoT battery performance using emulation software
Concilium Technologies Editor's Choice
Battery life affects the cost and reliability of IoT-based infrastructure and is a key purchasing consideration for consumer electronic IoT devices.

Read more...
NuWave Technologies: Excellence in electronic component procurement
NuWave Technologies Editor's Choice
Based in Randburg, Gauteng, NuWave Technologies is built on core values of integrity, honesty, transparency, and service excellence.

Read more...
Arduino platform with Analog Devices technology for flexible industrial control
Altron Arrow Editor's Choice DSP, Micros & Memory
Software-configurable systems enable industrial OEMs to deliver unprecedented flexibility to the factory floor, while simplifying product complexity.

Read more...
Accelerating RF PCB design in a 5G world
ASIC Design Services Editor's Choice Design Automation
Billions of IoT devices coming online in the coming years will require RF design capabilities that support ultra-fast 5G speeds.

Read more...