Editor's Choice


Mobile devices in hazardous areas

26 July 2023 Editor's Choice Circuit & System Protection

The intention of this paper is to outline the basic requirements for designing and manufacturing an IS mobile device. What are the risks and what do the standards say? This article will explain why IS mobile devices are more expensive than standard rugged devices. Five areas where the requirements of IS are important and substantial to avoid ignition have been selected. All references are to SANS 60079-11:2012 (based on IEC 60079-11:2011) unless otherwise stated.

The battery

The battery itself is the largest risk. Key issues are battery design, short circuits, overheating, how the battery is charged and battery charge connectivity (USB and magnetic charge terminals). Battery construction is defined in SANS/IEC60079-11, and extensive destructive tests are required, for example, spark ignition and temperature.

SANS/IEC60079-11 6.2.5 defines the requirements for battery segregation and charging. Even if charging is carried out in a non-hazardous area, the charging/data connection must ensure the ratings of protective components are not exceeded. Therefore, the charging connections should either be rated to Um 250 V, or a special charger or cable must be provided.

Where the battery is user-replaceable, the IS mobile device should be marked accordingly. External contacts for charging have their own requirements. The standard defines requirements for plug and socket design to prevent accidental and unsafe connection errors.

Electrostatic discharge

Electrostatic discharges are a source of ignition − some plastics can even be statically charged when wiped or cleaned with a cloth. Aluminium can rust, becoming a spark risk.

SANS/IEC60079-0 defines requirements for non-metallic enclosures and for preventing electrostatic charges. SANS/IEC60079-0 also defines requirements for metallic enclosures, with different requirements for Group I, II and III respectively. For example, Group I has a limit of 15% aluminium for use in fiery mines.

Accessories

For accessories that are not purpose-built (scanners, headsets etc. where the accessory Ui Ii Pi must be compatible with the mobile device Uo Io Po), cable connectivity to devices is limited to the Safe Area, and these terminals need either electrical or mechanical protection whilst in use in the hazardous area, to prevent short circuits or sparks.

Connectivity points on the device require protection. The magnetic coupling terminals require IP30 (Group II, protected from tools and wires greater than 2,5 millimetres) or IS limiting circuitry to prevent sparks should they be accidently short-circuited.

RF Power

RF power needs to be controlled, depending on the hazardous area environment, to avoid induced currents. Whilst Wi-Fi and Bluetooth do not get near the 2 W limit, devices can exceed this with GSM and LTE/4G/5G.

Product design

Product design needs to meet safety component power derating, segregation distances, capacitance and inductance, and prevent hotspots. Safety components (resistors, Zener diodes, etc.) require 2/3 power derating. Creepage and clearance (including use of encapsulation) for PCB layout distances (components and tracks) are defined in the standard. There are also requirements to prevent incorrect connection or interchangeability. Fuses must be rated for the Um voltage, and be encapsulated.

The requirements for making a device IS are onerous, time-consuming and costly, requiring specific battery design and PCB component level changes to meet power deratings, creepage and clearance. This makes it very difficult and complicated to convert a standard device to Ex ia/ib. Even Ex ic is challenging.

There are also a few practical things to consider when selecting devices. For example, there have been reports in Europe of fake ATEX certificates and unsafe devices being issued with ‘legitimate’ ATEX certificates in recent months.

The mechanism for removing non-compliant ATEX devices or certificated devices is fractured as it is down to the market surveillance authority in each country. There is however a formal mechanism for those authorities to collaborate and share information.

Other considerations are:

1. IECEx has a mechanism for devices and certificates to be reported and removed. IECEx also has an online database of certificates, so it is easy to confirm certification and validity.

2. Batteries typically have a limited life and typically only a six-month warranty. Devices with replaceable batteries will extend the usable life considerably.

3. MDM compatibility and Android Enterprise compliance provide some guarantee of security and quality.

4. The impact of security with respect to support and bug fixes should be considered.

To read the full article with all the details visit www.dataweek.co.za/*extech23


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
Four ways to enhance IoT battery performance using emulation software
Concilium Technologies Editor's Choice
Battery life affects the cost and reliability of IoT-based infrastructure and is a key purchasing consideration for consumer electronic IoT devices.

Read more...
NuWave Technologies: Excellence in electronic component procurement
NuWave Technologies Editor's Choice
Based in Randburg, Gauteng, NuWave Technologies is built on core values of integrity, honesty, transparency, and service excellence.

Read more...
Arduino platform with Analog Devices technology for flexible industrial control
Altron Arrow Editor's Choice DSP, Micros & Memory
Software-configurable systems enable industrial OEMs to deliver unprecedented flexibility to the factory floor, while simplifying product complexity.

Read more...
Accelerating RF PCB design in a 5G world
ASIC Design Services Editor's Choice Design Automation
Billions of IoT devices coming online in the coming years will require RF design capabilities that support ultra-fast 5G speeds.

Read more...
Achieving lowest cost, scalable and dynamic wireless mesh network installations
CST Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
In many situations it is desirable for sensors to be connected wirelessly in a mesh network as this saves infrastructure and cost since long cabling runs are not required.

Read more...
Residues on PCBs – Causes and remedial measures
Electronic Industry Supplies Editor's Choice Manufacturing / Production Technology, Hardware & Services
Soldering with wire and iron leaves process judgments up to individual operators, and can produce a wide variety of defects, scrap, or long-term quality issues.

Read more...