Editor's Choice


Contactless fingerprint sensing technology developed at CSIR

9 November 2016 Editor's Choice News Electronics Technology

The Council for Scientific and Industrial Research (CSIR) has developed a new-generation fingerprinting sensing technology using high-speed, large-volume optical coherence tomography (OCT). The device will contribute to law enforcement and forensics in general.

Funded by the Department of Science and Technology (DST), the OCT project succeeded in taking conventional OCT technology used for fingerprint biometrics to a much deeper level, literally. Ann Singh, CSIR laser scientist responsible for OCT, explains that the technique uses light to capture, in 3D, the finest of details from biological tissue. It could be likened to ultrasound, but using light.

“It is important to note that the light source of the OCT does not destroy DNA when extracting the latent fingerprints. The differentiating factor of our technology is that the CSIR team has enabled higher-resolution fingerprint acquisition by capturing more substrates of live or latent fingerprints (seen and unseen fingerprints left at crime scenes). The result is a significantly more accurate and tamper-proof fingerprint representation,” says Singh, who also extended her gratitude to the core hardware team – Ameeth Sharma, Rocky Ramokolo, Ted Roberts, Hencharl Strauss and Corrie van der Westhuizen – for their participation and perseverance in seeing this project through.

CSIR senior biometrics research engineer, Rethabile Khutlang, says the contactless nature of OCT means that it can acquire latent fingerprints without destroying potential useful DNA material for forensics. It can also detect sweat glands and can detect if the subject that is being scanned is dead or alive. These important qualities enhance biometric security features for high-end applications such as military, national security points and forensics.

Crime scene personnel will be able to use the OCT device to scan areas and lift fingerprints without the use of dusting and the risk of contamination. The contactless nature of the scan means that multiple acquisitions are possible; and since OCT is non-destructive, secondary analyses can be performed and used to identify criminals.

Another benefit of the technology, according to CSIR biometrics and image processing researcher Luke Darlow, is the ability to scan fingertips without the need for contact between the scanner and the fingertip. “This solves the problem of elastic distortion in conventional ‘slap’ scan fingerprint acquisition devices, which is caused by the pressure of a finger on a surface. Since it is contactless, it is also hygienic and residual fingerprints are not left on a scanner surface. In addition, unlike current technology, it is not influenced by moisture conditions or skin damage.

“The CSIR OCT system is capable of acquiring both external and internal fingerprints. Combining these allows for a hybrid fingerprint that results in better biometric performance. The acquisition of such detailed fingerprints means that fake prints can be easily detected,” he says.

According to Delon Mudaly, head of the CSIR National Laser Centre, the device is currently a prototype, and the next step is to reduce its size to a handheld system and prepare for commercialisation. “For that we intend to use our Photonics Prototyping Facility (PPF),” he says, “whose function is to enable the development of prototypes – such as the OCT device – that will result in products that satisfy a market need associated with photonics-based technologies and devices.”

The CSIR’s OCT technology is not limited to biometrics. It can also be used in fields such as dermatology, ophthalmology and polymer characterisation. The launch also illustrated the CSIR’s multidisciplinary muscle by using Cmore to demonstrate the near real-time forensics. Cmore is an advanced, innovative situation awareness and decision-support platform that exploits modern web and mobile technologies to address the need for shared awareness.

For more information contact Tendani Tsedu, CSIR, +27 (0)12 841 3417, [email protected], www.csir.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
Four ways to enhance IoT battery performance using emulation software
Concilium Technologies Editor's Choice
Battery life affects the cost and reliability of IoT-based infrastructure and is a key purchasing consideration for consumer electronic IoT devices.

Read more...
NuWave Technologies: Excellence in electronic component procurement
NuWave Technologies Editor's Choice
Based in Randburg, Gauteng, NuWave Technologies is built on core values of integrity, honesty, transparency, and service excellence.

Read more...
Arduino platform with Analog Devices technology for flexible industrial control
Altron Arrow Editor's Choice DSP, Micros & Memory
Software-configurable systems enable industrial OEMs to deliver unprecedented flexibility to the factory floor, while simplifying product complexity.

Read more...
Accelerating RF PCB design in a 5G world
ASIC Design Services Editor's Choice Design Automation
Billions of IoT devices coming online in the coming years will require RF design capabilities that support ultra-fast 5G speeds.

Read more...
Achieving lowest cost, scalable and dynamic wireless mesh network installations
CST Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
In many situations it is desirable for sensors to be connected wirelessly in a mesh network as this saves infrastructure and cost since long cabling runs are not required.

Read more...
Residues on PCBs – Causes and remedial measures
Electronic Industry Supplies Editor's Choice Manufacturing / Production Technology, Hardware & Services
Soldering with wire and iron leaves process judgments up to individual operators, and can produce a wide variety of defects, scrap, or long-term quality issues.

Read more...