Editor's Choice


Mobile devices in hazardous areas

26 July 2023 Editor's Choice Circuit & System Protection

The intention of this paper is to outline the basic requirements for designing and manufacturing an IS mobile device. What are the risks and what do the standards say? This article will explain why IS mobile devices are more expensive than standard rugged devices. Five areas where the requirements of IS are important and substantial to avoid ignition have been selected. All references are to SANS 60079-11:2012 (based on IEC 60079-11:2011) unless otherwise stated.

The battery

The battery itself is the largest risk. Key issues are battery design, short circuits, overheating, how the battery is charged and battery charge connectivity (USB and magnetic charge terminals). Battery construction is defined in SANS/IEC60079-11, and extensive destructive tests are required, for example, spark ignition and temperature.

SANS/IEC60079-11 6.2.5 defines the requirements for battery segregation and charging. Even if charging is carried out in a non-hazardous area, the charging/data connection must ensure the ratings of protective components are not exceeded. Therefore, the charging connections should either be rated to Um 250 V, or a special charger or cable must be provided.

Where the battery is user-replaceable, the IS mobile device should be marked accordingly. External contacts for charging have their own requirements. The standard defines requirements for plug and socket design to prevent accidental and unsafe connection errors.

Electrostatic discharge

Electrostatic discharges are a source of ignition − some plastics can even be statically charged when wiped or cleaned with a cloth. Aluminium can rust, becoming a spark risk.

SANS/IEC60079-0 defines requirements for non-metallic enclosures and for preventing electrostatic charges. SANS/IEC60079-0 also defines requirements for metallic enclosures, with different requirements for Group I, II and III respectively. For example, Group I has a limit of 15% aluminium for use in fiery mines.

Accessories

For accessories that are not purpose-built (scanners, headsets etc. where the accessory Ui Ii Pi must be compatible with the mobile device Uo Io Po), cable connectivity to devices is limited to the Safe Area, and these terminals need either electrical or mechanical protection whilst in use in the hazardous area, to prevent short circuits or sparks.

Connectivity points on the device require protection. The magnetic coupling terminals require IP30 (Group II, protected from tools and wires greater than 2,5 millimetres) or IS limiting circuitry to prevent sparks should they be accidently short-circuited.

RF Power

RF power needs to be controlled, depending on the hazardous area environment, to avoid induced currents. Whilst Wi-Fi and Bluetooth do not get near the 2 W limit, devices can exceed this with GSM and LTE/4G/5G.

Product design

Product design needs to meet safety component power derating, segregation distances, capacitance and inductance, and prevent hotspots. Safety components (resistors, Zener diodes, etc.) require 2/3 power derating. Creepage and clearance (including use of encapsulation) for PCB layout distances (components and tracks) are defined in the standard. There are also requirements to prevent incorrect connection or interchangeability. Fuses must be rated for the Um voltage, and be encapsulated.

The requirements for making a device IS are onerous, time-consuming and costly, requiring specific battery design and PCB component level changes to meet power deratings, creepage and clearance. This makes it very difficult and complicated to convert a standard device to Ex ia/ib. Even Ex ic is challenging.

There are also a few practical things to consider when selecting devices. For example, there have been reports in Europe of fake ATEX certificates and unsafe devices being issued with ‘legitimate’ ATEX certificates in recent months.

The mechanism for removing non-compliant ATEX devices or certificated devices is fractured as it is down to the market surveillance authority in each country. There is however a formal mechanism for those authorities to collaborate and share information.

Other considerations are:

1. IECEx has a mechanism for devices and certificates to be reported and removed. IECEx also has an online database of certificates, so it is easy to confirm certification and validity.

2. Batteries typically have a limited life and typically only a six-month warranty. Devices with replaceable batteries will extend the usable life considerably.

3. MDM compatibility and Android Enterprise compliance provide some guarantee of security and quality.

4. The impact of security with respect to support and bug fixes should be considered.

To read the full article with all the details visit www.dataweek.co.za/*extech23


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

PCIe 7.0 technology. Too soon or not fast enough?
Spectrum Concepts Editor's Choice
Data scientists, AI system architects, IC designers, optical engineers, interconnect providers like Samtec, and other solutions providers, are rethinking system topologies.

Read more...
From the editor's desk: Trekkie on my mind
Technews Publishing Editor's Choice
This year’s exciting announcement was in the non-terrestrial network sector with many NTN chips being released, promising communications from anywhere on Earth.

Read more...
Cree: Illuminating the future of LED technology
Altron Arrow Editor's Choice Opto-Electronics
As a pioneer in this field, Cree LED has been instrumental in shaping the LED landscape, driving innovation and performance in this sector.

Read more...
RFID in aviation: the ultimate solution to baggage mishandling
Osiris Technical Systems Editor's Choice Telecoms, Datacoms, Wireless, IoT
Creating a solution that enables real-time tracking of airline baggage on a global scale seems like an impossible task when considering the number of airlines, airports, and passengers that flow through and between them.

Read more...
The power of UWB
EBV Electrolink Editor's Choice Telecoms, Datacoms, Wireless, IoT
Ultra-Wideband, the robust wireless communications technology commonly known as UWB, is such a versatile technology, capable of doing so many different things, that it can be hard to categorise.

Read more...
SBC with Intel N-series processor
Vepac Electronics Editor's Choice
The UP 710S represents the evolution of the credit card-sized form factor, adding new, sought-after features and performance.

Read more...
Eight ways temporary solder mask is used for electronic assembly
Testerion Editor's Choice Manufacturing / Production Technology, Hardware & Services
While it is most used to mask open vias in a wave soldering process, operators find all kinds of creative ways to use solder mask to solve process challenges.

Read more...
How ADI battery management solutions empower safer, smarter robots
Altron Arrow Editor's Choice Power Electronics / Power Management
Choosing an appropriate battery pack and its accompanying battery management system is a critical decision in designing an autonomous mobile robot.

Read more...
New element reduces power consumption of AI
Editor's Choice
By mimicking the energy-efficient operation of the human brain, TDK’s neuromorphic element could cut the power consumption of AI applications down to 1/100th of traditional devices.

Read more...
From humble beginnings to industry excellence
Seven Labs Technology Editor's Choice
Seven Labs strives to offer a more integrated service offering, which can provide customers with an easier route to acquiring the components and services they need. This offering includes various software- and service-related products.

Read more...