Editor's Choice


The CHIPS act is a big deal

28 September 2022 Editor's Choice

Recently, the CHIPS and Science Act was signed into US law, a $280 billion bill that paves the way for new chip foundries to be built on US soil.

Recently, the CHIPS and Science Act was signed into US law, a $280 billion bill that paves the way for new chip foundries to be built on US soil. This is a significant investment in the US semiconductor industry with $52 billion specifically targeting manufacturing and research, the repercussions thereof due to be felt in all parts of the globe.

The recent global pandemic showed us a few painful weaknesses of the globalisation that the world is currently facing. Shortages of components and rising prices were rife as demand outstripped supply. The new CHIPS Act seeks to address these shortfalls by allowing eggs to be spread over many baskets.

Right now, a large proportion of chip manufacturing takes place in East Asia.

Before the pandemic, this system worked relatively smoothly with no one caring that the company designing the products were far removed from the companies actually manufacturing those products. But after the introduction of COVID and the supply chain disruptions that it caused, many components were simply not available which caused a world-wide shortage. In a nutshell, when countries in the East Asia region get a cold, the rest of the engineering world suffers as well.

If the CHIPS Act does its job, more semiconductors will be manufactured on US soil which means that a major global event or even political uncertainty in a specific region will hopefully not cause a similar shortage to the one recently seen. Although seeing US-based semiconductor foundries are still a few years off, what is more exciting is that a large proportion of the funds (around $13 billion) are dedicated not to the building of these foundries, but rather to R&D; and addressing supply chain concerns. Much of these funds will be channelled into research in quantum information science, artificial intelligence, cybersecurity and advanced communication technologies.

Further to this, another $10 billion has been earmarked for the creation of innovation and technology hubs to help spur on the generation of technology hotspots. In fact, only about 20% of the total funds set aside by the CHIPS Act focuses on chip manufacturing. A huge portion of the funds seeks to revitalise scientific research and development.

Education has not been overlooked either. Around $13 billion has been set aside to aide students in the STEM fields of study ranging from school level, through college to graduate studies. This is vital if a qualified workforce is to be available to work in these design and manufacturing companies in the next decade onwards.

This investment will have a positive spinoff, not only for the design and manufacturing companies involved, but also for every common person worldwide who enjoys the benefit of this new digital age. Let’s hope that the implementation of this Act will not slow down due to bureaucracy and red tape.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

PCIe 7.0 technology. Too soon or not fast enough?
Spectrum Concepts Editor's Choice
Data scientists, AI system architects, IC designers, optical engineers, interconnect providers like Samtec, and other solutions providers, are rethinking system topologies.

Read more...
From the editor's desk: Trekkie on my mind
Technews Publishing Editor's Choice
This year’s exciting announcement was in the non-terrestrial network sector with many NTN chips being released, promising communications from anywhere on Earth.

Read more...
Cree: Illuminating the future of LED technology
Altron Arrow Editor's Choice Opto-Electronics
As a pioneer in this field, Cree LED has been instrumental in shaping the LED landscape, driving innovation and performance in this sector.

Read more...
RFID in aviation: the ultimate solution to baggage mishandling
Osiris Technical Systems Editor's Choice Telecoms, Datacoms, Wireless, IoT
Creating a solution that enables real-time tracking of airline baggage on a global scale seems like an impossible task when considering the number of airlines, airports, and passengers that flow through and between them.

Read more...
The power of UWB
EBV Electrolink Editor's Choice Telecoms, Datacoms, Wireless, IoT
Ultra-Wideband, the robust wireless communications technology commonly known as UWB, is such a versatile technology, capable of doing so many different things, that it can be hard to categorise.

Read more...
SBC with Intel N-series processor
Vepac Electronics Editor's Choice
The UP 710S represents the evolution of the credit card-sized form factor, adding new, sought-after features and performance.

Read more...
Eight ways temporary solder mask is used for electronic assembly
Testerion Editor's Choice Manufacturing / Production Technology, Hardware & Services
While it is most used to mask open vias in a wave soldering process, operators find all kinds of creative ways to use solder mask to solve process challenges.

Read more...
How ADI battery management solutions empower safer, smarter robots
Altron Arrow Editor's Choice Power Electronics / Power Management
Choosing an appropriate battery pack and its accompanying battery management system is a critical decision in designing an autonomous mobile robot.

Read more...
New element reduces power consumption of AI
Editor's Choice
By mimicking the energy-efficient operation of the human brain, TDK’s neuromorphic element could cut the power consumption of AI applications down to 1/100th of traditional devices.

Read more...
From humble beginnings to industry excellence
Seven Labs Technology Editor's Choice
Seven Labs strives to offer a more integrated service offering, which can provide customers with an easier route to acquiring the components and services they need. This offering includes various software- and service-related products.

Read more...