Telecoms, Datacoms, Wireless, IoT


Out-of-the-box spoofing mitigation with Galileo’s OS-NMA service

29 May 2020 Telecoms, Datacoms, Wireless, IoT

Over the past two decades, satellite-based positioning has become an indispensable, everyday technology that we constantly rely on – often even without being aware of it.

With the relentless expansion of applications and use cases, driven largely by falling cost of ownership and improvements in positioning accuracy, there will soon be one GNSS receiver in operation for every person on the planet. But now, with the accuracy challenge all but solved, security is becoming a key factor slowing the development of new, lucrative business models and emerging critical applications.

That’s why there is so much excitement around a new service from Galileo, the EU’s global navigation satellite system (GNSS). First conceived in 2013, Galileo’s open service navigation message authentication (OS NMA) system lets GNSS receivers ensure that the satellite signals they receive are, indeed, from Galileo satellites and that they have not been modified. The approach makes it more difficult for hackers and other bad actors to spoof GNSS receivers by feeding them fraudulent signals. The European GNSS constellation will be the first to offer authenticated navigation messages to civilian users free of charge.

The approach the European GNSS Agency (GSA) adopted to authenticate the signals is already well established for digital communication on the Internet. It consists of appending an encrypted authentication signature to GNSS navigation messages, which can be used to verify the messages based on a hybrid symmetric/asymmetric key approach.

The service will only be available to advanced GNSS receivers that are able to securely store a copy of the public key used to decrypt the authentication message and to ensure that it can be trusted. To ensure that current users of Galileo’s navigation services do not see their service interrupted, the new navigation messages, broadcast on Galileo’s E1B frequency band, will be fully backward compatible. This means that older receivers will still be able to use them to determine their position, simply without the value-add of message authentication.

A critical step towards fully secure positioning

The move by the GSA comes in response to growing demand across industries for secure positioning technology. “At the GSA, we work in close collaboration with the industry to design and leverage Galileo’s unique capabilities and rapidly develop new applications to respond to user needs,” said Fiammetta Diani, head of market development at the GSA.

OS NMA, step one in the agency’s plans, will not entirely solve the GNSS security challenge. It will, however, considerably raise the level of sophistication that such attacks require, benefiting a variety of applications that are frequent targets of spoofing attacks. These include smart tachographs used in trucks, taxis and ride sharing vehicles and tracking devices used in commercial cargo and fishing vessels. Reliably flagging spoofing attempts will make it more difficult for companies to skirt legislation by tampering with the GNSS receivers.

GNSS data authentication will also play an important role in so-called mission critical use cases – think advanced driver assistance systems, autonomous driving, or any number of risk-prone commercial activities. And, by mitigating one of GNSS’s main vulnerabilities, it will no doubt add value in less critical ones as well, in retail and logistics, smart cities and connected industries.

Leveraging OS NMA from day one

As a leading supplier of GNSS receivers for telematics solutions, we at u-blox have long been at the front line in bringing the benefits of OS NMA to our customers. Through our active involvement in the EU-led group of experts on the smart tachograph, for example, we are helping drive the implementation of OS NMA. That’s why it should hardly come as a surprise that our latest GNSS platforms (u-blox M9 for standard precision positioning, u-blox F9 for high precision positioning) are designed to leverage Galileo’s authenticated navigation signals from the day they go live.

“We are glad to see that a key player in GNSS manufacturing, such as u-blox, is already looking forward to exploit Galileo new features and in particular the open service navigation message authentication to contribute to safer road transportation in European roads and beyond,” says GSA’s Fiammetta Diani.

OS NMA is one of the cornerstones of our approach to increase the security and reliability of our GNSS receivers. It adds to improvements made by concurrently monitoring signals from several GNSS constellations on multiple frequency bands, as well as integrating other data, such as input from inertial sensors. That being said, for Galileo and for u-blox, OS NMA is just one more stepping stone towards fully secured GNSS-based positioning technology.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...