Telecoms, Datacoms, Wireless, IoT


Carrier Grade Linux 4.0 accelerates telecoms standards-based COTS adoption

5 September 2007 Telecoms, Datacoms, Wireless, IoT

Standards-based technologies are rapidly being adopted by the telecommunications industry, and for good reason.

Leveraging standards-based solutions allows telecom equipment manufacturers (TEMs) and network equipment providers (NEPs) to use commercial off-the-shelf (COTS) hardware and software systems across multiple network elements - speeding time-to-market, saving money, and freeing up key resources to focus on competitive differentiation.

Equally important, the adoption of standards-based elements enables new and emerging hardware to plug into an existing network infrastructure without extensive retooling and associated costs. It also encourages use of best-of-breed technologies without imposing vendor lock-in. For much of the new hardware being deployed in next generation networking (NGN) infrastructures, the de facto standard is the Advanced Telecommunications Computing Architecture (ATCA). ATCA is a perfect example of a standard that not only promises all the benefits of a COTS solution, but has also reached a point of maturity for wide use in real-world implementations.

Getting standards-based technologies to deliver on their intended promise requires heavy lifting and cooperation. For many industries, such as mobile phones, the proliferation of special interest groups (SIGs) has led to overlap and competing standards, resulting in a splintered, confused industry and delays in standards adoption.

In the communications industry, however, there is significant cooperation between different SIGs. In telecommunications, nearly a dozen SIGs have worked to define the technology components that fit into an overall solution. Some of the most notable SIGs include the Communications Platform-Trade Association (CP-TA), PICMG, the SCOPE Alliance, the Service Availability Forum (SAF) and The Linux Foundation.

Each communication SIG has a specific function and focus: The Linux Foundation focuses on specifications for the Linux OS; PICMG focuses on standards for ATCA hardware; the SAF focuses on middleware above the OS; and the CP-TA focuses on interoperability between different vendor implementations of hardware and software. The SCOPE Alliance does not define any particular standard, but creates desired technology profiles based on Linux Foundation, PICMG, and SAF specifications.

Unlike in many other industries, communications SIGs work closely together. The Carrier Grade Linux (CGL) specification developed by The Linux Foundation includes some standards defined by the SAF and specifies support for ATCA. A loose consortium, the Mountain View Alliance, provides a liaison, marketing and awareness function for all communications SIGs.

What is new in CGL 4.0

CGL 4.0 comprises more than 250 individual requirements covering seven categories, or 'books': Performance, Hardware, Standards, Serviceability, Availability, Security, and Clustering. Each core member of the CGL Working Group (Hewlett-Packard, IBM, Intel, MontaVista, Motorola, NTT, and Wind River) was responsible for updating each book.

The new CGL 4.0 specification also includes useful information and resources for developers. The specific tools and APIs needed for CGL distributions are specified, and proofs of concepts (PoCs) are provided, along with reference code. The PoCs play a critical role, because they refer to existing open-source projects that can be used to implement the CGL requirement. All requirements in the specification must have an associated PoC. In some cases, there may be multiple PoCs or other open-source projects available to meet a requirement. This has a dual impact: First, all distributions registering for CGL 4.0 will have a consistent set of features, with at least one active open-source project supporting it; Second, because there are often many ways to implement a feature, there is room for different distributions to compete and differentiate. This improves the overall quality and choice available to providers implementing CGL.

Carrier Grade Linux: now a Linux Standard Base workgroup

With publication of CGL 4.0 complete, The Linux Foundation is in the process of rechartering the CGL Working Group to fit the foundation's organisational structure. The foundation plans to integrate the CGL specification into the Linux Standard Base (LSB). The LSB delivers interoperability between applications and the Linux OS. Currently, all major distributions comply with the LSB and many leading application vendors - such as MySQL, RealNetworks, and SAP - are certifying. The LSB provides a cost-effective way for vendors to target multiple Linux distributions while building only one software package.

For end users, the LSB and its mark of interoperability preserves choice by allowing them to select the applications and distributions they want, while avoiding technology and vendor lock-in. LSB certification of distributions results in more applications being ported to Linux, and ensures that distribution vendors are compatible with those applications. The LSB ensures that Linux does not fragment.

By adding the CGL specification as a LSB certification or sub-profile, The Linux Foundation will raise the bar even further for the CGL spec, improving its already high level of credibility and value for equipment providers.

Summary: the impact of CGL 4.0

The CGL 4.0 specification has immediate, ongoing benefits for everyone who develops, deploys, and uses Linux-based software for communications-based applications.

* For TEMs and NEPs, a unified, stable specification means faster time-to-market, investment protection, a longer life cycle for network equipment, improved interoperability, a real multi-vendor ecosystem, and streamlined compliance with environmental standards.

* For hardware and software COTS vendors, reduced fragmentation of the ecosystem will motivate application vendors to produce off-the-shelf building-block components consistent with the needs of TEMs and NEPs.

* For service providers, CGL 4.0 means the ability to accelerate service deployment with confidence, knowing the platform is stable and delivers a high level of functionality, performance, and reliability.

* For developers, specifying the right tools and practices for carrier-grade development, along with PoCs and reference code, simplifies and expedites the development process.

* For end customers and end users, the net result is equipment and services that deliver exceptional performance and availability, increased freedom of choice and quality of services, and a seamless user experience.

For more information contact Andrew Palmer, Embedded Industrial Solutions, +27 (0)12 547 6071.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved