Telecoms, Datacoms, Wireless, IoT


RF remote control design simplified

5 September 2007 Telecoms, Datacoms, Wireless, IoT

Traditional infrared (IR) remote controls use IR LEDs to emit radiation focused by a plastic lens into a narrow beam.

Data is encoded by modulating the beam to provide immunity from other IR sources such as fluorescent lights. The receiver uses a silicon photodiode to convert the IR radiation to a current for decoding by the receiver's MCU. IR does not penetrate walls - although it can be reflected by walls and ceilings - and so generally does not interfere with other devices in adjoining rooms.

However, while IR's simplicity, low-cost and low-power consumption has ensured its widespread adoption, the technology is not without its weaknesses. The requirement for line-of-sight (or at least direct reflection), limited range and the complexity involved in accommodating bidirectional communications are the three major drawbacks.

RF (radio frequency) technology addresses all of these challenges: it does not require line-of-sight communication; can control appliances from room-to-room at ranges up to 10 metres, and easily supports two-way transmission.

The RF alternative

RF has been an option for remote control for some time but the technology's relative expense, design complexity and power consumption have made it uncompetitive with IR for most applications. Nordic Semiconductor claims that the development of a new generation of low power RF transceivers such as the nRF24L01, however, is helping to change that.

That said, the hardware is only part of the solution; a robust RF protocol is crucial to produce an RF link that works well in the presence of other RF systems utilising the ever more crowded 2,4 GHz band. Consequently, a good RF solution not only depends on competent hardware design, but also demands a good knowledge of wireless protocol design.

RF remote design made easy

To ease the design process, Nordic Semiconductor offers an RF remote control reference design, the nRD24H1. The device (transmitter) side of the nRD24H1 is implemented as a hardware module fitted on a six-button controller application board. The module includes a PCB antenna, 2,4 GHz transceiver (nRF24L01) and 8-bit MCU. The RF module supports up to 49 button inputs plus status LEDs. An alternative layout has fewer input buttons combined with serial interfaces for display support.

The reference design's host (receiver) is a production ready, full-speed USB dongle supporting the HID (human interface device) class with descriptors for all commands defined in Windows Vista. A USB compliance certificate is included in the kit, as well as a test ID for USB. This means that if changes to the supplied USB module are limited, USB compliance can be obtained simply by referring to this design.

The nRD24H1 also includes all firmware needed to make a remote control. The key part of this firmware is a complete two-way RF protocol stack for remote control applications. The protocol stack is implemented as a standalone software module providing an API (application programming interface) to the application layer. On top of this protocol stack, a simple application layer example, specific to the six button application board, is also included.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
Industrial-grade Ethernet switches
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
Covering PoE-powered series and certified models like PROFINET, DNV, and Railway, these products offer reliable networking solutions for diverse industrial applications.

Read more...
Non-reflective SPDT RF switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADRF5019 from Analog Devices is a non-reflective, single pole, double throw RF switch that operates from 100 MHz to 13 GHz.

Read more...
Ultrawideband Low Noise Amplifier
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ADL8101 is an ultrawideband, low noise amplifier that operates from 10 kHz to 22 GHz with typical gain and noise figure of 14 dB and 3,5 dB respectively.

Read more...
Data Centre trends 2025
Telecoms, Datacoms, Wireless, IoT
Innovation in powering and cooling AI racks, management of energy consumption and emissions all to be a focus in 2025.

Read more...
Air temperature and humidity transmitter
Mimic Components Telecoms, Datacoms, Wireless, IoT
The RHT air temperature and humidity transmitter is a fully wireless solution designed for seamless measurement of temperature and humidity over long distances.

Read more...
Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...