Telecoms, Datacoms, Wireless, IoT


Building high-end Ethernet functionality into SDH networks: an introduction

16 May 2007 Telecoms, Datacoms, Wireless, IoT

Metro networks have seen a large amount of churn over the last few years. Given that the MAN (metro area network) is the first part of the network in offering customer services, the mix of technology in the MAN could enable or hinder the service provider from providing newer services. Also, a MAN is characterised by a higher order of magnitude of devices, and hence the cost and complexity of the technology has a direct impact on the profitability of the network.

Several technologies have been strong contenders for deployment in metro networks. Traditionally, SDH (synchronous digital hierarchy)/SONET (synchronous optical network) has dominated Metro networks. Traditional SDH/SONET was a hierarchical TDM technology that provided speeds of up to 2,5 Gbps in the metro. Since voice represented a majority of the traffic in the metro in the previous decade, a circuit-oriented technology like first-generation SDH/SONET suited the needs just fine.

Next-generation SDH/SONET

Given the large installed base of SDH/SONET and increasing demand for data services, significant efforts have been made towards data-optimising SDH/SONET networks. Next-generation SDH/SONET (NG SDH/SONET), which came into existence around 2002, has three important components: virtual concatenation (VCAT) (ITU-T G.707/Y.1322 and G.783), link capacity adjustment scheme (LCAS) (ITU-T G.7042/Y.1305) and generic framing procedure (GFP) (ITU-T G.7041 (2001) and ANSI T1.105.02 (2002)). The above protocols help SDH/SONET efficiently carry data, and lend flexibility and dynamism to SDH networks. However, just next-generation SDH/SONET itself can only help realise point-to-point Ethernet services. The full power of Ethernet can only be realised by integrating Ethernet switching into a network.

Why Ethernet switching

The biggest disadvantage of traditional SDH/SONET is the use of dedicated point-to-point circuits. This implies that when a customer is assigned a VC-12 (the smallest unit of an SDH network, a 2 Mbps pipe), the 2 Mbps pipe is reserved for that customer, whether he uses it or not (Figure 1). When the customer does not use this bandwidth, it cannot be re-claimed by another customer. Another disadvantage is the lack of flexibility. If the customer required another 2 Mbps, the equipment will have to be cross-connected again, and another pipe of 2 Mbps will be assigned.

Figure 1. Traditional SDH Node cross-connects circuits
Figure 1. Traditional SDH Node cross-connects circuits

Ethernet takes advantage of statistical multiplexing. In Ethernet, all data travels in one pipe, rather than hierarchically aggregated pipes (such as VC-12s in SDH). This implies that if a certain customer is not using the 2 Mbps assigned to him, another customer can use it. This results in a significant amount of bandwidth efficiency in the network. Another advantage of Ethernet is the flexibility it provides. If the bandwidth requirement at a certain Ethernet switch goes up, more traffic can be pumped into the same port (or another port on the same equipment) without any configuration. Thus, bandwidth efficiency and upgradeability are the strongest points in favour of introducing Ethernet switching in the network (Figure 2).

Figure 2. Ethernet switch takes and puts back data into one common pipe
Figure 2. Ethernet switch takes and puts back data into one common pipe

However, Ethernet has traditionally had poor OAM capabilities, which arises from its roots in the local area network. And Ethernet performs poorly in delivering carrier-class services like voice across the network.

Integrating Ethernet switching into next-generation SDH/SONET

The true power of Ethernet and SDH can be realised by integrating Ethernet switching into an SDH network. In this case, a set of pipes in the network can function as a virtual Ethernet pipe as shown in Figure 3. Each node would behave like an SDH ADM or an Ethernet switch based on the pipe the traffic is being carried in.

Figure 3. An SDH MSPP with Ethernet switching functionality
Figure 3. An SDH MSPP with Ethernet switching functionality

An Ethernet switching network on NG-SDH/SONET is proving to be a very popular option for deployment in metro networks (Figure 4). Point-to-point as well as advanced point-to-multipoint, and multipoint-to-multipoint Ethernet/IP services such as video, VoIP (voice over IP) and virtual private networks can be delivered over existing SDH/SONET networks - incrementally, and in parallel with traditional TDM services such as voice and private lines. This feature is the strongest point in favour of Ethernet-over-SDH, given that there are significant SDH/SONET deployments in place in the metro. For example, a service provider could start with a virtual 10 Mbps Ethernet pipe (consisting of 5 VC-12 SDH pipes) and then gradually increase it to 50 Mbps (25 VC-12 SDH pipes) as demand for these services increases.

Figure 4. Logical view of an Ethernet switched sub-network in an NG-SDH network
Figure 4. Logical view of an Ethernet switched sub-network in an NG-SDH network

Conclusion

For now, NG-SDH seems to have its roots firmly entrenched in service provider networks. Given the ubiquitous presence of SDH in the metro, incrementally offering high-end Ethernet services over this SDH network would be the best way of packetising the metro. This approach ensures that the service provider can start offering risky but more profitable data services without letting go of 'cash cow' voice services. The incremental nature of this approach should also alleviate the risk of introducing these new data services into the network. The high comfort-levels network operators have with NG-SDH, and NG-SDH's strong OAM features, combine well with the flexibility and efficiency of Ethernet to give the service provider the best of both worlds.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

5G transparent antenna
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions recently announced the launch of its 5G transparent antenna, the YFCX001WWAH, an innovative solution designed to improve connectivity while maintaining seamless device design.

Read more...
GNSS chipset for wearables
RF Design Telecoms, Datacoms, Wireless, IoT
The UBX-M10150-CC from u-blox is a GNSS chip that supports GPS, QZSS/SBAS, Galileo, and BeiDou constellations, and is designed for integration into wearable applications.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
LTE Cat 1 bis communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG810M series is a series of LTE Cat 1 bis wireless communication modules specially designed by Quectel for M2M and IoT applications.

Read more...
Quad-channel 16-bit converter
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The ARF0468 from Advance RF is a quad-channel mixed-signal processing chip, with each channel comprising three major functional modules: ADC/DDC/DDS.

Read more...
Tactical navigation system
Etion Create Telecoms, Datacoms, Wireless, IoT
Etion Create’s CheetahNAV Compact is a versatile tactical navigation system designed for security services, emergency services, and light all-terrain vehicles (ATVs) using offline navigation maps.

Read more...
Smart module for multi-media devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Powered by a Qualcomm processor, Quectel’s new SC200V is designed to deliver exceptional performance across system capabilities, multimedia functions, and network connectivity.

Read more...
Remote provisioning firmware added to SIMCom modules
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently announced that its range of Cat 1 bis IoT modules are now being prepared with the firmware necessary to support SGP.32 functionality.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...