Telecoms, Datacoms, Wireless, IoT


Transceiver architectures for low-cost radios - Part I

9 April 2003 Telecoms, Datacoms, Wireless, IoT Access Control & Identity Management

Anyone who has ever worked in the wireless field knows there are as many different wireless implementations as there are useful applications. Many of today's systems engineers continue to have difficulty specifying detailed radio requirements and evaluating possible trade-offs in performance. At times it seems easier to just select one of the popular wireless systems that we hear about everyday (eg, 802.11, Bluetooth) and not sweat the specifics of the wireless implementation.

For applications where interoperability is a requirement this is a logical (and necessary) choice, but for many other wireless applications (eg, cordless phones, industrial control, consumer game controllers, meter reading, wireless audio, security) systems designers can usually reduce size, cost, and power by using highly-integrated RF transceivers (like the Micro Linear ML2724) and developing simple radio protocols optimised to the specific application.

For example, using an 802.11 solution running at 11 Mbps with carrier sense multiple access, full TCP/IP stack, encryption, and PCMCIA host interface for anything other than a high-speed, Ethernet-compatible wireless network will almost certainly result in unnecessary cost, size, and power. Likewise, a Bluetooth solution, while much lower cost and lower power than 802.11, still carries the additional overhead associated with a complex peer-to-peer personal area network (PAN) designed with interoperability as its primary feature.

The downside of adopting standards-based solutions is that in a lot of wireless applications these solutions have many features not required resulting in unnecessary cost and power. Table 1 shows a simple comparison of the features, intended purpose, and relative cost between some of the more popular solutions.

To effectively realise an optimal wireless solution doesn't have to be complex and mysterious, especially with today's highly integrated radio transceiver ICs. Knowing basic radio specifications and how to choose a radio architecture and link protocol is all that is necessary.

Table 1. Comparison of common wireless systems
Table 1. Comparison of common wireless systems

In a subsequent issue of Dataweek I will present Part II of this series that will describe some of the basic system-level radio specifications to consider along with a brief overview of common radio architectures found in today's integrated transceivers.

For more information contact Kevin Jurrius, Components & System Design, 011 979 4274.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
LTE Cat 1 bis communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG810M series is a series of LTE Cat 1 bis wireless communication modules specially designed by Quectel for M2M and IoT applications.

Read more...
Quad-channel 16-bit converter
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The ARF0468 from Advance RF is a quad-channel mixed-signal processing chip, with each channel comprising three major functional modules: ADC/DDC/DDS.

Read more...
Tactical navigation system
Etion Create Telecoms, Datacoms, Wireless, IoT
Etion Create’s CheetahNAV Compact is a versatile tactical navigation system designed for security services, emergency services, and light all-terrain vehicles (ATVs) using offline navigation maps.

Read more...
Smart module for multi-media devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Powered by a Qualcomm processor, Quectel’s new SC200V is designed to deliver exceptional performance across system capabilities, multimedia functions, and network connectivity.

Read more...
Remote provisioning firmware added to SIMCom modules
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently announced that its range of Cat 1 bis IoT modules are now being prepared with the firmware necessary to support SGP.32 functionality.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
u-blox expands NORA-B2 BLE modules
RF Design Telecoms, Datacoms, Wireless, IoT
The new nRF54L chipset-based wireless modules reduce current consumption and double processing capacity, catering to diverse mass market segments.

Read more...