Telecoms, Datacoms, Wireless, IoT


How flies can teach us to communicate efficiently

27 August 2003 Telecoms, Datacoms, Wireless, IoT

Mother Nature is proving a most resourceful teacher for leading researchers in the burgeoning communications technology world. In a revolutionary approach to managing networks for the next generation of military battlefield communications, inspiration has been found in the lifestyle of a humble insect.

It has long been known that the efficient use of the radio spectrum is the vital key to maintaining effective communications for many civil and military radio systems. In the continued search over the years for this elusive matter, many techniques have been investigated ranging through such diverse and arcane approaches as genetics and the crystallisation process.

Now, innovative scientists from BTexact, QinetiQ, and the Ministry of Defence in the UK are adapting a complex algorithm based on the development of the common fruit fly. The algorithm basically allows the base stations in a mobile phone network to negotiate with each other to decide how the available radio frequencies will be divided to meet the demand for calls without causing unacceptable interference.

The patented invention was inspired by the behaviour of cells in the fruit fly Drosophila Melanogaster that has been the subject of intensive academic research for nearly 100 years. During the fly's development, some cells must decide whether to make bristles - the sensory hairs of the adult fly. They do this by sending signals to the neighbouring cells and 'listening' for signals from those neighbours. As a result the fly gets the right pattern of bristles without any central control.

It was realised that this principle of self-organisation could be exploited for modern mobile phone networks and allow the network to adapt continuously to changes in demand for calls, and to 'heal' in the event of a base-station failure. There would no longer be the need for a central organiser to track events in the network and replan frequency use to accommodate faults and changes in demand.

At the same time, researchers at QinetiQ's R&D facility had been looking into novel designs for a future battlefield spectrum-management architecture using dynamic and distributed frequency assignment.

In a battlefield environment, networks must continue to function in the face of serious disruption such as unplanned movements and accidental or deliberate interference from other radio transmitters. Central planning then becomes very challenging and may be overtaken by events.

Key to this problem is to distribute the assignment process throughout the battlefield, rather than relying on a centralised process. The self-organising features of the BTexact algorithm could be exploited and integrated within the proposed QinetiQ architecture. Research work with BTexact has been initiated, with a view to adapting the algorithm to operate within a battlefield spectrum management system.

For more information contact QinetiQ, Douglas Millard, dmillard@QinetiQ.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
LTE Cat 1 bis communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG810M series is a series of LTE Cat 1 bis wireless communication modules specially designed by Quectel for M2M and IoT applications.

Read more...
Quad-channel 16-bit converter
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The ARF0468 from Advance RF is a quad-channel mixed-signal processing chip, with each channel comprising three major functional modules: ADC/DDC/DDS.

Read more...
Tactical navigation system
Etion Create Telecoms, Datacoms, Wireless, IoT
Etion Create’s CheetahNAV Compact is a versatile tactical navigation system designed for security services, emergency services, and light all-terrain vehicles (ATVs) using offline navigation maps.

Read more...
Smart module for multi-media devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Powered by a Qualcomm processor, Quectel’s new SC200V is designed to deliver exceptional performance across system capabilities, multimedia functions, and network connectivity.

Read more...
Remote provisioning firmware added to SIMCom modules
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently announced that its range of Cat 1 bis IoT modules are now being prepared with the firmware necessary to support SGP.32 functionality.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
u-blox expands NORA-B2 BLE modules
RF Design Telecoms, Datacoms, Wireless, IoT
The new nRF54L chipset-based wireless modules reduce current consumption and double processing capacity, catering to diverse mass market segments.

Read more...