Editor's Choice


Phased array development platform

28 June 2024 Editor's Choice Telecoms, Datacoms, Wireless, IoT

Phased array beamforming has been used in radar and communication systems since the mid-20th century. In recent years, these systems have seen extensive adoption in areas such as 5G mobile communications, military and commercial radars, satellite communications, and automotive applications.


Figure 1. CN0566 development platform

Phased array antennas (or beamforming antennas) have an electronically steerable radiation pattern, allowing a robust communication link to be established between two radios. Power from the transmitter can be directed toward the intended receiver, and the receiving antenna can be aimed at the transmitter. In addition, nulls in the receiver’s antenna pattern can be placed to reject interfering signals, and a link can be maintained between two radios that are moving with respect to one another. Phased arrays vary widely in complexity, from a few elements in a simple linear array to thousands of elements in planar, cylindrical, conical, and other shaped arrays.

Phased arrays have a steep learning curve, spanning multiple technological and engineering disciplines including microwave RF electronics, continuous and discrete-time signal processing, embedded systems, analogue-to-digital and digital-to-analogue converters, digital design, and computer networking. Commercial phased array systems are typically expensive and built for a single application and are, therefore, not conducive to exploration of basic concepts.

This circuit developed is a low cost, simplified phased array beamforming demonstration platform that offers a hands-on approach to learning about the principles and applications of phased array antennas. The complete system provides an ideal tool for proof of concept or debugging of more complex systems. It offers the opportunity to explore and understand advanced topics such as beamforming, beam steering, antenna impairments, frequency modulated continuous wave (FMCW) radar, and synthetic aperture imaging. The design consists of RF components, signal processing hardware, and contains an on-board 8-element linear array antenna that operates from 10,0 to 10,5 GHz (X band). This frequency range allows common low-cost motion sensor modules to be used as a microwave source.

The circuit is designed to mount directly on a Raspberry Pi, and uses the PlutoSDR low-cost software defined radio (SDR) module to digitise the intermediate frequency (IF) output. The software interface is through the Linux industrial input/output framework, providing a host of debug and development utilities, and cross-platform API with Python, GNURadio, and MATLAB support.

Application software can run either locally on the Raspberry Pi, or remotely via a wired or wireless network connection. The entire system is powered via a single 5 V, 3 A USB-C power adaptor.


Figure 2. Delayed signals arrive at combiner in-phase.

Beamforming fundamentals

Phased array beamforming is a signal processing technique used in antenna arrays for radio communications, radar systems, and medical imaging. Beamforming provides many benefits – the antenna can be aimed directly at a target, which may be a transmitter, receiver, or object being tracked in the case of radar. The antenna pattern’s nulls can also be strategically placed to avoid interfering signals.

Forming a beam pattern involves the simultaneous transmission or reception of signals from multiple antennas. A phase shift with gain adjustment is applied to each channel. Thereafter, the individual channels are summed together in either the analogue or digital domain, or a hybrid of both. The phase shifters are adjusted to control the direction of the combined radio RF beam, allowing for real-time beam steering and reconfiguration, without physically moving the antennas. The main beam width and sidelobe suppression can be adjusted by adjusting the gain (or tapering) the array elements.

The CN0566 main board implements an eight-element phased array, down-converting mixers, local oscillator, and digital control circuitry. The CN0566 outputs are two IF signals at a nominal frequency of 2,2 GHz, that are digitised by a PlutoSDR module.


Figure 3. Delayed signals arrive at combiner out-of-phase.

Figures 2 and 3 provide simple illustrations of a wavefront received by four antenna elements from two different directions. The electrical beam is steered 45º to the left, toward the desired transmitter, by inserting time delays in the receive paths, and then summing all four signals together.

In Figure 3, that time delay (configured for a 45° beam) matches the time difference of the wavefront striking each element. In this case, that applied delay causes the four signals to arrive in phase at the point of combination. This coherent combining results in a larger signal at the output of the combiner.

To continue reading visit https://bit.ly/458r5r6


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Capacitors for implantable medical applications
Altron Arrow Passive Components
Vishay has a range of tantalum and multilayer ceramic capacitors (MLCC), manufactured in medical-qualified facilities, for implantable applications.

Read more...
Nomso Kana: From nuclear scientist to ICT entrepreneur
Editor's Choice
A nuclear scientist turned enterprising trailblazer, Nomso is reshaping Africa’s digital landscape through her visionary venture, Simsciex Technologies.

Read more...
The impact of women in South Africa’s engineering sector
Editor's Choice
In South Africa, the presence of women in engineering is not only promoting diversity, but also driving innovation and economic growth.

Read more...
Small-scale custom development in the information age
Editor's Choice
Being able to approach potential large-scale investors with a physical prototype that shows the basic operation of an idea provides a much stronger base on which to sell the idea for further development.

Read more...
Precision sensor interface SoC
Altron Arrow DSP, Micros & Memory
The MAX40109 is a low-power, precision sensor interface SoC that includes a high-precision, programmable analogue frontend, and digital signal processing.

Read more...
Three lessons learned from successful SMEs over the past 27 years
Editor's Choice News
Companies that prioritise employee growth and create a positive work environment tend to have higher employee retention rates and better overall performance.

Read more...
Quectel and iCORP: driving wireless technology
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
As the IoT continues to expand, Wi-Fi and Bluetooth are increasingly relied on to deliver secure, robust, short-range connectivity for IoT applications and devices ranging from customer premise equipment to Bluetooth beacons and trackers.

Read more...
How integrated on/off controllers contribute to energy-efficient system designs
Altron Arrow Editor's Choice Power Electronics / Power Management
The importance of electronic system efficiency has grown more significant, emphasising the need for solutions that promote energy efficienc,y not just during field operation, but also during production.

Read more...
Purchasing made effortless
Seven Labs Technology Editor's Choice Manufacturing / Production Technology, Hardware & Services
Seven Labs Technology transforms procurement with effortless purchasing, every time. Aligning themselves as the partner in procurement, they make sure that every purchase counts by streamlining the process, making it the smart and easy way to purchase.

Read more...
Robbie Venter, former CEO of Altron, passes
Altron Arrow News
It is with sadness that we report on the passing of the former chief executive and board member of South African technology group Altron, Robert (Robbie) Venter.

Read more...