Editor's Choice


Using a voltage converter to improve battery efficiency

27 September 2023 Editor's Choice Power Electronics / Power Management

Battery-operated circuits must be energy-efficient for the battery to last a long time. For this, energy-efficient components are selected and combined into a system. The fewer building blocks in an electrical circuit, the greater the energy efficiency of the overall system.

Figure 1 shows an electrical water meter as an example of a battery-operated device. The system uses a MAX32662 microcontroller, with just one supply voltage. The input voltage range lies between 1,71 and 3,63 V.

The microcontroller can be supplied directly by the battery, which delivers a voltage of 2 to 3,6 V, depending on the temperature and state of charge. Only a few additional components are required in the circuit, which means that the overall system efficiency can be very high. However, the current consumption of the microcontroller is largely independent of the actual supply voltage. Whether the microcontroller is operated with 2 or 3,6 V makes no difference to this IC.

For cases like this, new nanopower switching regulators can be used. With these types of switching regulators, the battery voltage can be converted efficiently to a lower value, such as 2 V. A nanopower switching regulator delivers the required current for the microcontroller at the output, but requires less current at the higher voltage on the battery side. Figure 2 shows the circuit for a water meter with an added high-efficiency nanopower switching regulator, the MAX38650.

With the addition of this IC, the battery life can be significantly extended. Life extensions of 20% and higher are easily possible; the exact savings effect differs from case to case because of the numerous influencing parameters, such as temperature, peak currents, periodic switch-off of the sensor, and others. The quiescent current of the added DC-to-DC converter is decisive here. If the switching regulator consumes too much energy, the anticipated savings disappear.

Figure 3 shows a circuit with the MAX38650 nanopower voltage regulator. As the name indicates, the quiescent current of this IC is in the nanoampere range. During operation, the switching regulator draws only 390 nA of quiescent current. During times when the DC-to-DC converter can be switched off, it needs only 5 nA of shutdown current. This nanopower voltage converter is ideal for saving energy in a system such as the one shown in Figure 1.

As can be seen in Figure 3, only a few passive external components are required. Instead of a resistor voltage divider, only one resistor on the RSEL pin is used to set the output voltage. A resistor voltage divider consumes a considerable amount of current, which, depending on the voltage and resistor, can greatly exceed the quiescent current of the MAX38650. Thus, this IC uses a variable resistor, which is only briefly checked when the circuit is switched on. The IC detects the set-point value for the output voltage through the fact that for a short time during switch-on, 200 µA of current is passed through this variable resistor. The resulting voltage is measured and then stored internally in the IC. This means there are no energy losses during operation through a conventional voltage divider.

By adding a voltage converter, it is possible to increase the efficiency of a system and extend the life on a charge of a battery-operated device.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Active event tracking using a novel new technique
Editor's Choice
SPAES (single photon active event sensor) 3D sensing, developed by VoxelSensors, is a breakthrough technology that solves current critical depth sensing performance limitations for robotics applications.

Read more...
ABB commits to a more inclusive future as it empowers women and youth in engineering
ABB South Africa Editor's Choice
Through structured development, inclusive hiring, and focused empowerment, ABB Electrification is shaping a more equitable and dynamic future for the engineering industry.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Unlocking the next frontier – women leading digital transformation in South Africa’s technology sector
Editor's Choice
As South Africa celebrates Women’s Month, it is an ideal time to reflect on the critical role women are playing in shaping the country’s technology sector.

Read more...
SmartRAID 4300 Series
Altron Arrow DSP, Micros & Memory
Microchip’s disaggregated architecture leverages host CPU and PCIe infrastructure to overcome traditional storage bottlenecks in scalable, secure NVMe RAID storage solutions.

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
5G RedCap: Unlocking scalable IoT connectivity
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks rapidly sunset across the globe, the Internet of Things (IoT) market faces a critical challenge: how to maintain reliable cellular connectivity without the complexity or cost of full 5G.

Read more...
Bluetooth wireless SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
he EFR32BG29 wireless SoC from Silicon Labs is a highly efficient, high memory, low-power, and ultra compact SoC designed for secure and high-performance wireless networking for IoT devices.

Read more...
Is RFoIP technology the future for signal transportation for Satcom applications?
Accutronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
RFoF technology continues to be used for successful IF signal transportation in the ground segment and there is widespread belief that it will be for some time to come, especially for critical communications applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved