Power Electronics / Power Management


Why realistic voltage sources should be considered when designing a reliable power supply

28 July 2021 Power Electronics / Power Management

For a power supply to function reliably, there must always be an input voltage within the permissible range available to the switching regulator.

A power supply’s source, in actual use, is never ideal. The real behaviour, including parasitics, needs to be considered to build a reliable power system. When we use power supplies, we ensure that a DC-DC converter, such as a switching regulator, can withstand a certain input voltage range and that it can generate the required output voltage from it with sufficient current.

The input voltage is frequently specified as a range because it is usually not regulated precisely. For a power supply to function reliably, however, there must always be an input voltage within the permissible range available to the switching regulator. For example, a typical input voltage range for a 12 V supply voltage may lie between 8 V and 16 V. Figure 1 shows a step-down converter (buck topology) that generates 3,3 V from a nominal voltage of 12 V.

However, when designing the DC-DC converter, it is not sufficient to only consider the minimum and maximum input voltage values. Figure 1 shows that the buck converter has a switch at its positive input. This switch is turned on or off. The switching speed should be as high as possible so that only low switching losses occur. However, this causes a pulsed current to flow on the supply line. Not every voltage source can deliver these pulsed currents without any problems. As a result, voltage drops occur at the input of the switching regulator. To minimise this, backup capacitors are required right at the input of the power supply. Such a capacitor is shown as CIN in Figure 1.

Figure 2 shows the circuit from Figure 1, but this time with the parasitic elements of the supply line and the voltage source itself. Both the internal resistance of the voltage source (RSERIES), the inductance and resistance of the supply line (R, L supply line) and any current limitation are key characteristics of the voltage source that must be taken into account to guarantee trouble-free operation of the switching regulator.

For the most part, the correct selection of the input capacitors can ensure proper operation of the circuit. The first approach should be to take the recommended capacitance value for CIN from the data sheet for a switching regulator IC. However, if the voltage source or the supply line exhibits special characteristics, it makes sense to simulate the combination of the voltage source and the switching regulator. Figure 3 shows a simulation performed with the LTspice simulation environment from Analog Devices.

A simulation circuit for the ADP2360 buck converter is shown in Figure 3. The simplified form, in which the input voltage (IN) is generated with an ideal voltage source, is shown here. Because no internal resistance is defined for the voltage source and no parasitic values are given for the supply line between the voltage source and the switching regulator, the defined voltage is always applied to the VIN pin of the ADP2360. Therefore, it is not necessary to add an input capacitor (CIN).

However, in the real world, an input capacitor is always required with a switching regulator because the voltage source and the supply line are not ideal. If a simulation environment such as LTspice is also used for checking the behaviour with different input capacitors, a voltage source with internal resistance and a supply line with parasitic values for resistance and inductance, as shown in Figure 2, must be used.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
Powering Innovation eBook: Changing what’s possible
Power Electronics / Power Management
This exclusive read, entitled ‘Changing what’s Possible,’ delves into how power dense Vicor modules enable many world-changing innovations across various sectors.

Read more...
16-channel multicell battery monitor
Altron Arrow Power Electronics / Power Management
The ADBMS6830B is a multicell battery stack monitor that measures up to 16 series-connected battery cells with a lifetime total measurement error of less than 2 mV.

Read more...
Reliable redundancy with the Mibbo M3DN Series
Conical Technologies Power Electronics / Power Management
Designed for use with two parallel-connected power supplies, the M3DN Series allows for true redundancy, making it ideal for mission-critical applications.

Read more...
Automotive power-over-coax inductor
RS South Africa Power Electronics / Power Management
TDK has launched the ADL8030VA, a high-performance inductor designed specifically for power-over-coaxial applications.

Read more...
Rugged PSU for challenging conditions
Conical Technologies Power Electronics / Power Management
Built for rugged reliability, the Mibbo MFC Series delivers stable, efficient power in environments where moisture, dust, and temperature extremes are everyday challenges.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
15 W power module with wide input range
Brabek Power Electronics / Power Management
RECOM’s miniature power modules provide 15 W output and operate over a wide input range of 18-264 V AC or 18-375 V DC.

Read more...
Industrial-grade DIN rail PSU
Conical Technologies Power Electronics / Power Management
The Mibbo MTR960W is a reliable and cost-effective PSU option that delivers a solid 960 W of output power at 24?or 48 V DC.

Read more...
Energy harvesting and Matter for smarter homes
RF Design Power Electronics / Power Management
Qorvo’s collaboration with e-peas on the Matter Enabled Light Switch marks another significant step in advancing Matter adoption across the IoT industry.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved