Editor's Choice


Why you don’t take ‘touch’ for granted

30 September 2020 Editor's Choice

The key criteria for choosing the right sensor control IC


Adilson Jacob.

Touch has become an incredibly intuitive way for people to interact with high-tech devices. In just a few short years after the first smartphones hit the shelves, it seems the whole world is happily tapping, swiping, pinching and flicking on phones and tablets, in stores, at work, and on the road. We expect every response to be precise and instant, as cool and glassy smooth as the surface of the device itself.

What factors should I consider when designing a touch user interface?

Designers know that this is not always easy to achieve. The processes involved with creating and measuring the capacitance changes that describe the type and location of each touch on the screen are subject to numerous challenges such as electrical noise both inside and outside the system, humidity in the environment, and unintentional user gestures close to the screen.


On the other hand, ensuring electromagnetic compatibility (EMC) of the end product is especially challenging for equipment that contains a touchscreen. Whereas passing EMC testing calls for immunity to external electrical disturbances, the touchscreen relies on detecting and measuring disturbances to interpret the user’s wishes.

Achieving great touch sensitivity and fast response, while preventing unwanted signals causing spurious responses, calls for careful engineering.

Why is touch performance difficult to optimise?

Unfortunately, after many cumulative man-years of touchscreen development experience, there is no ‘default setting’, no universal parameters that can be simply programmed to make the touchscreen of an embedded project just work. Every system is different: there are multiple touchscreen technologies such as glass-film or glass-glass construction with single or double ITO (SITO/DITO) layers; the size of the screen and the cover-lens material and thickness influence touch response; and designers may have only a limited notion of the environment in which the screen will be used – whether outdoors or indoors, whether there will be high humidity or likelihood of water splashes, or other potential sources of interference.


The interactions between the display and the touch controller are critical to ensuring a great touch experience for the user. It’s probably fair to say that most projects consider the touch display before the controller. The concept for the product is often predominantly about look and feel, and the display size is often determined by application constraints, as are decisions about the cover-lens, such as the thickness, glass or polycarbonate, any vandal-resistant treatments, and anti-glare/anti-reflective coating.

How should I choose a touch controller?

With so many decisions already made or difficult to change, the challenge to identify and integrate a suitable touch controller – and optimise the firmware – can demand specialist skills and expertise.


Typical touch control chips on the market today are microcontroller-based ICs that integrate circuitry needed to stimulate the sensor and capture measurable responses. This typically includes a high-voltage charge pump controller, regulator, and multi-channel capacitance-to-digital converter that takes care of driving and sensing the capacitive-touch electrodes.

Not one shoe size fits all

Selecting the right touch IC to enhance your product’s performance cannot be a generic process. It needs to be as individual as each customer and tailored to their particular product’s application needs. This level of service doesn’t cost the earth. It is certainly not as costly as selecting the wrong touch IC, starting the whole design process again, or failing EMC testing.

Too often companies are having to take corrective action. In all instances they have actually added cost by extending their development time, doubling resources and investing twice, and not entering the market as quickly as intended.


Selecting the best controller for a given application can depend on factors such as cost and availability as well as performance. At Anders, we have experience with various types of controllers from several vendors, spanning a wide price/performance spectrum. A low-cost controller can often be tuned to deliver satisfactory performance, particularly with small display sizes and when the operating environment is relatively benign. With increasing display size, and as the electrical and electromagnetic environment becomes more challenging, a higher-performing controller is usually needed to achieve a suitable balance of signal detection and noise rejection to ensure robust and reliable touch detection in all operating conditions.

Table 1 shows an example of two very differing applications and the requirements for the touch IC.

Table 1. Touch IC requirements for two different applications.

Bolstering the familiarity that comes with the experience of working with various types of controllers on a wide range of customers’ projects, our preferred suppliers often present training workshops to introduce new products. These provide a valuable source of hands-on practice with the latest devices and techniques for touch optimisation. This way, we continue to expand the range of tools at our disposal to help make your touchscreen perform at its best.

The new product you’re developing right now is in demand and looks amazing, just as you designed it. Great touch is a critical part of the user-experience mix but can be the toughest aspect to solve.

Although not easy, with the right help you can get there. Let’s start the conversation.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The ‘magic’ of photovoltaic cells
Editor's Choice
Everyone knows that solar generation converts sunlight to electricity, but what comprises a solar panel, and how do they actually work?

Read more...
Analysis of switch-mode power supply: inductor violations
Altron Arrow Editor's Choice Power Electronics / Power Management
Common switch-mode power supply (SMPS) design errors are discussed, and their appropriate rectification is specified, with details on complications that arise with the power stage design of DC-DC switching regulators.

Read more...
Bridging the gap between MCUs and MPUs
Future Electronics Editor's Choice AI & ML
The Renesas RA8 series microcontrollers feature Arm Helium technology, which boosts the performance of DSP functions and of AI and machine learning algorithms.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Hardware architectural options for artificial intelligence systems
NuVision Electronics Editor's Choice AI & ML
With smart sensors creating data at an ever-increasing rate, it is becoming exponentially more difficult to consume and make sense of the data to extract relevant insight. This is providing the impetus behind the rapidly developing field of artificial intelligence.

Read more...
Demystifying quantum
Editor's Choice
Quantum, often called quantum mechanics, deals with the granular and fuzzy nature of the universe, and the physical behaviour of its smallest particles.

Read more...
Service excellence with attention to detail
Deman Manufacturing Editor's Choice
The vision of industry pioneers Hugo de Bruyn and Charles Hauman led to the birth of Deman Manufacturing, a company that sets new standards for innovation and performance within the industry.

Read more...
What is an RF connector?
Spectrum Concepts Editor's Choice Interconnection
If you look across the broader electromagnetic spectrum, the selection of the 3 kHz to 300 GHz frequency range for RF signals is a result of a balance between propagation characteristics, data transmission requirements, regulatory allocations, and the compatibility of electronic components and devices.

Read more...
Make your small asset tracker last longer
Altron Arrow Editor's Choice Power Electronics / Power Management
This design solution reviews a typical asset tracking solution, and shows how the MAX3864x nanopower buck converter family, with its high efficiency and small size, enables longer battery life in small portables.

Read more...
The power of Matter
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Matter offers a reliable, secure, seamless way to interconnect devices from different manufacturers, allowing a new level of interoperability to be enjoyed.

Read more...