Editor's Choice


Smoke detection matters

30 September 2020 Editor's Choice Analogue, Mixed Signal, LSI

By far the biggest safety challenge in smoke detection is the saving of lives. Innovations in the smoke detection market have been driven by factors that include the following:

• Growth in industrial buildings: The International Energy Agency (IEA) predicts that the floor area of buildings globally is set to grow at approximately 3% per year. This is a result of increasing urbanisation and improved access to energy in developing countries.

• The increasing use of synthetic material within buildings.

This is why smoke detection regulations are critically important when the value proposition is as basic as human life itself. There are two predominant smoke detection technologies used in smoke detector systems:

• Ionisation systems.

• Photoelectric smoke detectors.

Here are some of the pending and current global standards and what they mean for smoke detection technology and markets.

A summary of global standards

There are basically five main global standards with different requirements to pass the respective certification. Smoke detector systems need to be fully tested as an end-product, but testing can also happen at the subsystem level. This does not substitute for full certification, but can give peace of mind before embarking on costly end system certification.

US and Canada

• UL 268: Smoke Detectors for Fire Alarm Systems.

7th edition: This was due to come into effect on 29 May 2020, although it may be delayed until 30 June 2021.

• UL 217: Smoke Alarms.

8th edition: This was due to come into effect on 29 May 2020, although it may be delayed until 30 June 2021.

These standards include updates to the polyurethane flaming and smouldering and cooking nuisance (hamburger) tests.

Europe

• EN 14604: Smoke Alarm Devices (2006).

• BS EN 54: Fire Detection and Fire Alarm Systems (2015).

Part 29: Multisensor fire detectors, these are point-type detectors using a combination of smoke and heat sensors.

International

• ISO 7240: Fire detection and alarm systems (2018).

Part 7: Point-type smoke detectors using scattered light, transmitted light, or ionisation.

The Chinese standard for point-type smoke detectors follows the 2003 edition of this standard.

Details on testing

There are two aspects to each standard, the tests and the requirements for test setup.

Fire room tests are expressed in terms of time to alarm after initiation of fire or in terms of obscuration levels (or in some cases both). Obscuration is a unit of measurement for the concentration of smoke. It measures the amount of light that reaches the detector in the presence of smoke compared to the amount of light that reaches the detector in clean air. The higher the value of obscuration, the higher the smoke concentration levels will be.

The most stringent testing standards are currently NA/Canada UL 217 and UL 268.

Some of the relevant tests are given below, but there are many more.

UL 217 (8th edition)/UL 268 (7th edition)

• Paper fire: Must give an alarm before t = 240 s.

• Wood fire: Must give an alarm before t = 240 s.

• Smouldering smoke: Must give an alarm before obscuration levels exceed 29,26%/m.

• Flaming polyurethane foam: Must give an alarm before obscuration levels exceed 15,47%/m and t = 360 s.

• Smouldering polyurethane: Must give an alarm before obscuration levels exceed 34,3%/m.

• Hamburger (nuisance alarm): Must not give an alarm/fault before obscuration levels exceed 0,987%/m or the MIC value is in the 59,3% to 49,2% range.

• Sensitivity test, dust test, high humidity test: Must not give an alarm/fault. The sensitivity test measures the obscuration level at which the unit alarms in a controlled smoke chamber.

• Flammable liquid fire (UL 268 Canada only). Must give an alarm before t = 240 s.

For EN 14604, BS EN 54 and ISO 7240, there can be different sensitivity levels on the same test or additional specifications pertaining to, for example, liquid (heptane) fire, glowing smouldering cotton, or low temperature, black smoke liquid fire.

For a complete set of tests, the relevant specification must be referenced in full.

Smoke detection technology: one size does not fit all

Each international region has a very detailed set of tests that have different methods and setups for testing.

Passing UL 217 and UL 268 standards − currently the most stringent two standards − can give a good indication of compliance, although this is not a substitute for regional testing.

Using a component or subsystem that is UL-listed gives peace of mind. UL component recognition means that UL has evaluated components or materials intended for use in a complete product or system. These components are intended only for end-use products that may be eligible for UL certification. The ADPD188BI plus smoke chamber is currently pending for UL listing.

The ADPD188BI smoke detection module integrates LEDs, a photodiode and an analog front end (AFE) in one small 3,8 mm × 5,0 mm × 0,9 mm package. The benefits include:

• A reduced component count.

• Meets new and existing regulations for life safety due to a high signal-to-noise ratio (SNR) and wide dynamic range for lower signal measurement.

• Reduced nuisance alarms to ensure verified alerts (and avoid alarm disable) by having two-colour detection and high dynamic range.

• Low power dissipation to allow more devices on wired or wireless loops.

• Small size to enable placement of detectors in hard to reach places.

• The elimination of LED supply chain management requirements.

• Running on a standard SMT assembly process.

The future

Regulatory changes have driven the trend toward smaller, more accurate smoke detection systems. In addition to the regulatory changes, customers are demanding better aesthetics and a wider range of trickier deployment scenarios. Meeting this demand will require smaller form factors at lower power.

About the author

Grainne Murphy is a marketing manager in ADI’s Intelligent Buildings Group. She is a University of Limerick, Ireland graduate (B.Eng) and holds an MBA from Oxford Brookes University. She can be reached at [email protected].


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High reliability memories
Altron Arrow DSP, Micros & Memory
Infineon’s mil-temp memories offer a wide selection of volatile and non-volatile memories for applications that meet QML-Q certifications and offer support for mil-aero applications.

Read more...
Altron celebrates 60th birthday with a call to rebuild Johannesburg
Altron Arrow News
Altron is celebrating its 60th birthday by honouring Johannesburg’s heritage and encouraging business, government and civil society to come together and respond to our President’s call to rebuild Johannesburg.

Read more...
Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
ST MCUs extend ultra-low power innovation
Altron Arrow DSP, Micros & Memory
STMicroelectronics has introduced new STM32U3 microcontrollers with cutting-edge power-saving innovations that ease deployment of smart connected tech, especially in remote locations.

Read more...
Multicell battery monitoring
Altron Arrow Power Electronics / Power Management
The LTC6811 from Analog Devices is a multicell battery stack monitor that measures up to 12 series connected battery cells with a total measurement error of less than 1,2 mV.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...