Manufacturing / Production Technology, Hardware & Services


High-resolution infrared cameras for R&D

10 October 2018 Manufacturing / Production Technology, Hardware & Services

Whether designing or testing printed circuit board prototypes, developing new products or new product materials, or analysing laminar flow patterns on an aerodynamic design, thermal imaging plays a key role.

Analysing characteristics such as temperature, heat dissipation, latent heat and other heat-related material properties can reveal countless potential problems at an early stage in the development process to help ensure quality and avoid failures downstream. The technology has the potential to provide valuable insight into a wide range of applications, from materials analysis to component design to controlled chemical reactions.

Infrared cameras (also called thermal imagers) are ideal tools for both scientific research, and early and late stage development troubleshooting and analysis, because they collect thermal data without physically contacting the target and without interfering with the process.

Understanding what is really occurring in any situation often depends on the proper understanding and control of variables that may affect the material or device under test. Using a non-contact infrared camera to document and measure the performance or changes in thermodynamic properties of the object under test often eliminates variations that might be introduced by a contact temperature device such as an RTD or other contact temperature probe.

Furthermore, far more simultaneous data points can be collected with an infrared camera than physical sensors could ever possibly collect. These simultaneous data points combine to form a detailed, false-colour picture of the heat patterns at any point in time. This is invaluable to engineers and scientists, who understand the fundamentals of thermodynamics and heat flow, and have specific knowledge of the material or design under test.

Get the detail and accuracy you need

R&D infrared inspection and analysis covers a wide range of applications, from identifying thermal anomalies in circuit board components, to tracking phase changes in injection mould manufacturing, to analysing non-destructive testing of multilayer composites or carbon fibre components. While the specifics of those applications vary tremendously, all benefit from infrared cameras with a high degree of accuracy, excellent spatial and measurement resolution, high thermal sensitivity and responsive performance.

Fluke offers infrared cameras that provide all of these capabilities with a versatile set of features that are indispensable for many types of R&D applications. High resolution, coupled with optional macro lenses, can provide for up-close imaging capabilities that produce highly detailed and informative images, with apparent temperature calculations for each pixel.

Individual images can provide a wealth of data on their own. Capturing multiple images, or streaming radiometric data, means that the mountain of data increases exponentially. All who take on the task of research and development will therefore appreciate useable, accurate and analysable data.

Users can easily access this data from the included SmartView software and then often export it and apply their own analysis and algorithms. The extremely high thermal sensitivity of these infrared cameras, combined with their spatial resolution, allows for radiant analysis not possible with most commercially-available products. This allows for a more thorough and accurate analysis of various material properties.

When it comes to analysing printed circuit boards specifically, these thermal cameras can aid in performing the following functions:

Finding localised over-temperature issues. Design engineers have to combine heat intensive solid-state, high power transformers, high speed microprocessors, and analog-to-digital or digital-to-analog signal converters into a very small package.

Establishing cycle times. By setting the infrared camera to record thermal measurements as a solder point cools, cycle times for automated systems can be determined. Key points can be annotated with voice and text for quick review.

Analysing assembly impact. Quality review can be performed at various stages of the development and manufacturing processes to ensure that any issues are captured early to avoid costly component failures down the road.

Validating thermal modelling. Using thermal modelling software provides a good estimate of what will occur when a board is populated, but it’s still only a simulation. Designers can easily validate those results by comparing their thermal CAD model to what they’re actually getting with the camera as they populate the board and power-up components. Then the finished, powered-up prototype can be scanned and the results compared to the model to see how close it is.

Assessing collateral damage. Sometimes heat from the circuit board can affect the performance of other components in the system, such as making an LCD run too hot or interfering with mechanical operation. To avoid that one can assess how much heat dissipates from the entire package and how that heat may affect other parts of the system.

A designer can start by capturing an image of the powered-up unit with the cover on; that image shows the temperatures of all the components under power. Then the cover can be removed and a radiometric video recording performed of the temperature decay curve. A group of maximum temperature points can then be exported into spreadsheet software and used to backward-extrapolate the resulting curve to time zero, to see what the temperature of the component was before the cover was taken off.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Yamaha reveals software innovations to boost printing, mounting, and intelligent factory
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics Europe SMT Section has added new features to native equipment software and Intelligent Factory tools that accelerate equipment programming, increase production efficiency, and enhance factory productivity.

Read more...
UltiMaker introduces defence-grade 3D printing
RS South Africa Manufacturing / Production Technology, Hardware & Services
Leading at launch are the UltiMaker S6 Secure and UltiMaker S8 Secure, two robust solutions designed to deliver trusted and reliable, on-demand production capabilities.

Read more...
Automotive battery diagnostics tester
Comtest Power Electronics / Power Management
Midtronics’ MVT handheld battery tester is a revolutionary tool, powered by MDX-AI, which is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
The future is built by hand
Manufacturing / Production Technology, Hardware & Services
Choosing a trade or technical path does not just open doors for your future self. It opens doors for the people you will serve, the systems you will maintain, the businesses you will grow, and the communities you will strengthen.

Read more...
Comtest hosts channel partners
Comtest News
Comtest, together with FLUKE, recently set the stage for an unforgettable afternoon as they welcomed over 80 Channel Partners to their annual celebration of excellence.

Read more...
September exclusives at PCBWay: Big savings on PCBs and 3D printing
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] This September, PCBWay is bringing you two exciting, limited time offers that showcase both style and versatility. Whether you are designing with PCBs or prototyping with 3D printing, these will help you create more while spending less.

Read more...
Understanding solder paste viscosity and thixotropy
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
A solder paste’s viscosity and thixotropic properties, a measure of its resistance to flow, influence its performance in different production environments.

Read more...
Global electronics trade in an age of disruption
Manufacturing / Production Technology, Hardware & Services
Governments should invest in domestic strengths, coordinate with international partners, and align trade and industrial policy with the realities of a globally connected electronics sector.

Read more...
The new tool design of IWISS
Startech Industrial Manufacturing / Production Technology, Hardware & Services
Rooted in IWISS’ dedication to reliability, comfort, and efficiency, the company’s new design refresh elevates craftsmanship by incorporating a rich cultural influence.

Read more...
Strategic collaboration to advance industrial robotics training in South Africa
Manufacturing / Production Technology, Hardware & Services
Yaskawa Southern Africa has announced a strategic collaboration with Sol-Tech, a private vocational training institution based in Pretoria, to strengthen technical education in industrial robotics.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved