Manufacturing / Production Technology, Hardware & Services


High-resolution infrared cameras for R&D

10 October 2018 Manufacturing / Production Technology, Hardware & Services

Whether designing or testing printed circuit board prototypes, developing new products or new product materials, or analysing laminar flow patterns on an aerodynamic design, thermal imaging plays a key role.

Analysing characteristics such as temperature, heat dissipation, latent heat and other heat-related material properties can reveal countless potential problems at an early stage in the development process to help ensure quality and avoid failures downstream. The technology has the potential to provide valuable insight into a wide range of applications, from materials analysis to component design to controlled chemical reactions.

Infrared cameras (also called thermal imagers) are ideal tools for both scientific research, and early and late stage development troubleshooting and analysis, because they collect thermal data without physically contacting the target and without interfering with the process.

Understanding what is really occurring in any situation often depends on the proper understanding and control of variables that may affect the material or device under test. Using a non-contact infrared camera to document and measure the performance or changes in thermodynamic properties of the object under test often eliminates variations that might be introduced by a contact temperature device such as an RTD or other contact temperature probe.

Furthermore, far more simultaneous data points can be collected with an infrared camera than physical sensors could ever possibly collect. These simultaneous data points combine to form a detailed, false-colour picture of the heat patterns at any point in time. This is invaluable to engineers and scientists, who understand the fundamentals of thermodynamics and heat flow, and have specific knowledge of the material or design under test.

Get the detail and accuracy you need

R&D infrared inspection and analysis covers a wide range of applications, from identifying thermal anomalies in circuit board components, to tracking phase changes in injection mould manufacturing, to analysing non-destructive testing of multilayer composites or carbon fibre components. While the specifics of those applications vary tremendously, all benefit from infrared cameras with a high degree of accuracy, excellent spatial and measurement resolution, high thermal sensitivity and responsive performance.

Fluke offers infrared cameras that provide all of these capabilities with a versatile set of features that are indispensable for many types of R&D applications. High resolution, coupled with optional macro lenses, can provide for up-close imaging capabilities that produce highly detailed and informative images, with apparent temperature calculations for each pixel.

Individual images can provide a wealth of data on their own. Capturing multiple images, or streaming radiometric data, means that the mountain of data increases exponentially. All who take on the task of research and development will therefore appreciate useable, accurate and analysable data.

Users can easily access this data from the included SmartView software and then often export it and apply their own analysis and algorithms. The extremely high thermal sensitivity of these infrared cameras, combined with their spatial resolution, allows for radiant analysis not possible with most commercially-available products. This allows for a more thorough and accurate analysis of various material properties.

When it comes to analysing printed circuit boards specifically, these thermal cameras can aid in performing the following functions:

Finding localised over-temperature issues. Design engineers have to combine heat intensive solid-state, high power transformers, high speed microprocessors, and analog-to-digital or digital-to-analog signal converters into a very small package.

Establishing cycle times. By setting the infrared camera to record thermal measurements as a solder point cools, cycle times for automated systems can be determined. Key points can be annotated with voice and text for quick review.

Analysing assembly impact. Quality review can be performed at various stages of the development and manufacturing processes to ensure that any issues are captured early to avoid costly component failures down the road.

Validating thermal modelling. Using thermal modelling software provides a good estimate of what will occur when a board is populated, but it’s still only a simulation. Designers can easily validate those results by comparing their thermal CAD model to what they’re actually getting with the camera as they populate the board and power-up components. Then the finished, powered-up prototype can be scanned and the results compared to the model to see how close it is.

Assessing collateral damage. Sometimes heat from the circuit board can affect the performance of other components in the system, such as making an LCD run too hot or interfering with mechanical operation. To avoid that one can assess how much heat dissipates from the entire package and how that heat may affect other parts of the system.

A designer can start by capturing an image of the powered-up unit with the cover on; that image shows the temperatures of all the components under power. Then the cover can be removed and a radiometric video recording performed of the temperature decay curve. A group of maximum temperature points can then be exported into spreadsheet software and used to backward-extrapolate the resulting curve to time zero, to see what the temperature of the component was before the cover was taken off.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Transparent rigid PCBs launched on PCBWay
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] PCBWay is thrilled to announce a highly anticipated new service - transparent rigid PCBs – a combination of technology and aesthetics.

Read more...
20 years of precision, progress and purpose – the Jemstech journey
Jemstech Editor's Choice Manufacturing / Production Technology, Hardware & Services
Twenty years ago, Jemstech began as a small, determined venture built on technical excellence and trust. Today, it stands among South Africa’s leading electronic manufacturing service providers.

Read more...
An argument to redefine IPC class definitions for class 1, 2, & 3 electronics
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
One of the most critical aspects of electronic assembly reliability is cleanliness. Contaminants left on a circuit board after the reflow process can lead to failures through mechanisms such as electrochemical migration or corrosion.

Read more...
Large platform stencil printer
Techmet Manufacturing / Production Technology, Hardware & Services
GKG’s large platform stencil printer, the P-Primo, is designed to meet customer’s ultra-large printing requirements by supporting board dimensions up to 850 x 610 mm.

Read more...
Press-fit component inspection
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
In electronics manufacturing, optical inspection of press-fit components is crucial to ensure the quality, reliability, and performance of the final assembled product.

Read more...
A new era in wire bond inspection
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Viscom is developing a 3D wire bond inspection system that incorporates substantially improved sensors, a high image resolution, and fast image data processing.

Read more...
High-speed, high-resolution material deposition system
Manufacturing / Production Technology, Hardware & Services
ioTech recently unveiled the io600 inline digital laser material deposition system at productronica 2025.

Read more...
Mycronic’s MYPro A40 pick-and-place solution
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
Mycronic’s MYPro A40 pick-and-place solution, equipped with an MX7 high-speed mounthead technology, increases top placement speeds by 48% over the previous generation.

Read more...
Why ergonomics matters in digital microscopy
TANDM Manufacturing / Production Technology, Hardware & Services
While magnification technology has kept pace with demand, the wellbeing of the people behind the microscopes has often been overlooked with technicians spending long hours in intense focus, leading to chronic strain, fatigue, and costly mistakes.

Read more...
From ER to effortless: The 15-year journey of Seven Labs Technology
Seven Labs Technology Editor's Choice Manufacturing / Production Technology, Hardware & Services
What started as a business likened to an ‘ER’ for electronic components has today grown into a trusted partner delivering kitting services and full turnkey solutions – taking the effort out of electronics and helping customers truly ‘Move to Effortless.’

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved