Test & Measurement


Probing hints for optimising oscilloscope measurement bandwidth

3 April 2013 Test & Measurement

For those wanting to maximise the bandwidth of their oscilloscope for their measurements, an important aspect to consider is what the right probe can do. It is important to select the probe bandwidth relative to the oscilloscope being used, but just as important are the effects of probe grounding on overall measurement bandwidth.

Improper ground selection will drastically reduce system bandwidth and also create distortion on the measured signals. This article will cover four grounding techniques for active probes, the best ground solution, and explain the bandwidth impact associated with each technique.

Figure 1 shows the accessories/leads available for one type of Agilent oscilloscope probe. In order for readers to know which one of these to use and how each impacts the performance of an oscilloscope/probe system, this article will walk through four possible probe lead configurations and discuss the benefits and disadvantages of each.

Figure 1. Accessories for the Agilent N2796A 2 GHz active probe.
Figure 1. Accessories for the Agilent N2796A 2 GHz active probe.

Configuration 1: Hands-free probing with Y-lead adaptor and flex nose clip adaptor

Figure 2. Flex nose clip and Y-lead adaptor using an Agilent N2896A single-ended active probe.
Figure 2. Flex nose clip and Y-lead adaptor using an Agilent N2896A single-ended active probe.

Assume one was using an oscilloscope with 4 GHz of bandwidth. The probe in Figure 2 has an upper bandwidth of 2 GHz. Its input capacitance is below 2 pF, resulting in high input impedance at high frequencies. For these reasons, this active probe will be used as the main example for the remainder of this article.

Figure 2 also shows the active probe attached to a 10 centimetre Y-lead adaptor with a flex nose adaptor accessory. The combination of these accessories gives the user more probing flexibility and a hands-free solution. The flex nose accessory can be hooked to header pins, test points, IC leads and some passive components. However, the added length of these two accessories increases inductance, which severely degrades the bandwidth of the probe.

Using this probing configuration decreases the bandwidth by 1,5 GHz, resulting in effectively a 500 MHz probe. Measurements using this probe tip combination should be used for troubleshooting and looking for signals to be present, but signal integrity and bandwidth should not be scrutinised.

Configuration 2: Hands-free probing with Y-lead adaptor

In this configuration, the flex nose clip adaptor in Figure 2 is eliminated and only the Y-lead adaptor accessory is used. The Y-lead adaptor female pins are then plugged directly into industry standard header pins.

This solution reduces the inductance from the Figure 2 configuration and brings the probe bandwidth up to 1 GHz. However, the best case probe bandwidth is still cut in half. This probing solution should also be used as a rough troubleshooting method and should not be used to analyse a system’s performance relative to the signal seen on the oscilloscope.

Configuration 3: Probing with a copper pad and flex ground solution

Figure 3: Copper pad with flex ground using an Agilent N2896A single-ended active probe.
Figure 3: Copper pad with flex ground using an Agilent N2896A single-ended active probe.

Next, let us transition the measurement method from Y-lead adaptor to the flex ground solution shown in Figure 3. This solution significantly reduces the inductance and the majority of stray capacitance.

The ground blade performs best when used with the self-adhesive copper pad also shown in Figure 2. The copper pad can be cut to fit on top of any IC. Once attached to the IC, the copper pad should be grounded to a few of the IC grounds using shorting wires.

This solution is effective for probing signals with high-frequency content. However, to maximise this solution’s performance one should ground the copper pad in as many places as possible. The resulting performance is around 1,8 GHz, only 200 MHz away from the maximum bandwidth of this active probe.

Configuration 4: Probing with a ground blade solution

Figure 4. Spring tip with ground blade using an Agilent N2896A single-ended active probe.
Figure 4. Spring tip with ground blade using an Agilent N2896A single-ended active probe.

Now consider a switch from the copper pad and flex ground configuration to the ground blade configuration shown in Figure 4. This solution will provide maximum probing bandwidth.

The probe in Figure 4 has replaceable tips (both rigid and spring tips). It is preferable to use the spring tip as the ground blade is also spring loaded. This allows Z height flexibility while probing.

To change the probe tip, pliers should be used to grip the tip and pull it straight out of its contact socket along the axis of the probe. One should not grip the plastic insulator of the probe with the pliers or the tip could be crushed and the tip may no longer be able to be removed from the probe tip socket.

The spring tip is then inserted with pliers into the contact housing along the axis of the probe. In order to properly insert the spring tip completely into the housing, the probe tip should be carefully pressed against a hard surface.

Note that the ground blade is designed with a bend and can pivot, giving the user an adjustable pitch to find the closest ground possible while still connected to the signal target. This probing solution results in the probe’s highest signal bandwidth of 2 GHz.

Measurement results

Figure 5. Frequency response of all four configurations used with an Agilent 9000 Series oscilloscope.
Figure 5. Frequency response of all four configurations used with an Agilent 9000 Series oscilloscope.

Figure 5 shows all four configurations covered in this article. It is clear that while configurations 1 and 2 provide hands-free probing solutions, the bandwidth and signal integrity suffer relative to configurations 3 and 4.

The lead length of the Y-lead adaptor adds inductance and stray capacitance, creating a resonant circuit. The effects of this circuit are seen in the green and red lines in the form of ripple and frequency roll-off well before the 2 GHz point.

Taking away the Y-lead adaptor and reducing the ground length to the shorter flex ground accessory, flattens the response and improves bandwidth as shown in the blue line. However, using the ground blade solution gets the tip and the ground closer together for minimal ground inductance and stray capacitance, resulting in a 2 GHz frequency response well above the 3 dB point (see the black line in Figure 5).

Also note that the circuit under test may perform differently without the probe attached. This is due to capacitive loading induced by the probe. However, a high-impedance/low-capacitance probe designed for high-bandwidth circuits will reduce this.

Conclusion

The purpose of the four configurations shown in this article was to investigate the most accurate signal measurement possible and pass it through the probe to the oscilloscope. The resultant waveform on the oscilloscope will now most accurately represent the signal from the device under test.

It is important to remember that there will always be a trade-off between measurement flexibility, usability and resulting bandwidth. Added inductance can bring with it stray capacitance, creating RC circuits that resonate within the measured bandwidth.

These circuits will reduce bandwidth and the ripple that has been discussed will impact amplitude readings. For example, users can use longer lead solutions for quick checks to ensure that circuits are functioning. However, for critical measurements, lead length (both on the signal and ground side) should be kept to a minimum.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

60 MHz 16-bit AWG
Vepac Electronics Test & Measurement
Siglent’s SDG1000X Plus series function/arbitrary waveform generator offers a maximum output frequency of 60 MHz, 16-bit vertical resolution, 1 GSa/s sampling rate, and 8 Mpts arbitrary waveform length.

Read more...
AC programmable power
Accutronics Test & Measurement
TDK Corporation has announced the introduction of the TDK-Lambda brand GENESYS AC and GENESYS AC PRO series of 2 kVA and 3 kVA rated programmable AC power sources.

Read more...
QA introduces large chisel tip style probes
Techmet Test & Measurement
The two new probes have a larger diameter to provide better contact reliability.

Read more...
Digital PSU with four variable outputs
Vepac Electronics Test & Measurement
The PeakTech 6215 is a laboratory power supply with four separate voltage outputs, each one infinitely variable using the rotary controls on the front of the unit.

Read more...
High-voltage insulation resistance testers
Comtest Test & Measurement
Two new high-voltage insulation resistance testers, from Fluke, deliver accuracy and speed in industrial and solar PV applications.

Read more...
Digital accelerometer for high dynamics applications
RS South Africa Test & Measurement
TDK extends its Tronics portfolio with the AXO314, a high-performance digital MEMS accelerometer with ±14 g input range for industrial applications operating under shock and vibration.

Read more...
Evolution of the connected healthcare system
Concilium Technologies Telecoms, Datacoms, Wireless, IoT
The combination of advances in the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and cloud services impact the changes you see in healthcare today.

Read more...
Acceleration sensors for wearables
Future Electronics Test & Measurement
Bosch Sensortec has introduced two new acceleration sensors, the BMA530 and BMA580, both offered in a compact size of only 1,2 x 0,8 x 0,55 mm.

Read more...
Accurate laser measurement
Avnet Silica Test & Measurement
Online Teaser: Panasonic Industry’s laser sensor has a resolution of up to 0,5 µm, a linearity of ±0,05% FS, and a high-speed sampling of 100 µs.

Read more...
Handheld analyser with wide frequency range
Vepac Electronics Test & Measurement
The PXN-400 from Harogic is a handheld spectrum analyser that covers a frequency range of 9 kHz to 40 GHz, with an analytical bandwidth of 100 MHz.

Read more...