Test & Measurement


Dual-sensor technology for plastics manufacturing

16 September 2009 Test & Measurement

Different measurement principles have been applied to every conceivable measurement task, resulting in numerous sensor variations for similar applications. But each measurement principle has its own strengths and weaknesses, thereby naturally limiting the success with which a measurement can be taken for a particular application. For example, a laser sensor cannot be used for distance measurement (to determine thickness, for example) through rubber due to the optical limitation, whereas this same measurement can be accomplished quite simply with an eddy current sensor.

The novel ‘dual sensor’ approach from Micro-Epsilon is conceptually very simple: combine the strengths of two different measuring principles to benefit from the capabilities of both, thereby mitigating their inherent weaknesses. By evaluating the output signals of two different sensor types simultaneously, measurements which would otherwise be impossible can be attempted.

A typical application example for such an approach can be found in the automotive manufacturing sector where the plastic skin thickness inside a production mould for some of the plastic components of vehicles needs to be inspected during the manufacturing process in order to maintain the tight tolerance limits required. Preferably, this should take place during production in order to avoid possible scraping costs.

Automated thickness measurement during production

To produce plastic parts using modern techniques, polyurethane material is sprayed into a mould which shapes the material. The nozzle for the spray process is located on a robot arm, which moves precisely along the various contours of the mould. The dual sensors which measure the thickness of the sprayed part are also positioned on this robot arm. Immediately after the spray process, the robot arm moves to previously defined points where the sensors measure the thickness. If an error occurs anywhere, it can be rectified immediately.

The thickness measurement of the sprayed skin presented the developers at Micro-Epsilon with a few problems. The texture of the surface, the complicated geometric shape and the materials used – polyurethane and metal – place rigorous demands on measurement technology. Specialists from Micro-Epsilon were able to develop an elegant solution for this measurement application – two sensors were used based on different measurement principles (Figure 1).

Figure 1. Structure of Micro-Epsilon’s dual sensor
Figure 1. Structure of Micro-Epsilon’s dual sensor

A combination of laser triangulation and eddy current sensors

The fundamental principle underlying the measurement setup is that the distance to both surfaces is measured simultaneously. Through subtraction, the difference of both values gives the thickness of the layer. In order to measure the distance to the metal surface of the mould, an eddy current sensor is used, which is suitable for precise distance measurement to electrically conducting surfaces. Here, a high frequency alternating current flows through a coil cast into the sensor housing. The electromagnetic field produced by the coil induces eddy currents in the conducting measurement target, which in turn also produces an electromagnetic field (Figure 2). As a result, the impedance of the coil changes. This change of impedance provides an electrical signal which is proportional to the distance of the mould from the sensor. Since eddy currents can only be induced in ferromagnetic materials, the signal is not influenced by the thickness of the plastic skin.

Figure 2. The eddy current measurement principle
Figure 2. The eddy current measurement principle

The distance to the surface of the plastic foam, on the other hand, is measured using a laser triangulation technique. This requires that a laser projects a spot of light, which is monitored by a camera, onto the surface to be measured. If the distance between the sensor and the surface varies, the angle of incidence which the camera records changes. This allows for the distance to be determined very accurately using simple trigonometric calculations (Figure 3). The resolution using this method is down to a few micrometres.

Figure 3. Using laser triangulation, distances to surfaces can be measured very precisely
Figure 3. Using laser triangulation, distances to surfaces can be measured very precisely

A modified type EU15(05) sensor from Micro-Epsilon is used as the eddy current sensor, being specifically optimised for this application with two holes for the laser beams. In this way, any axial offset between the two sensors is avoided. The resolution of the eddy current sensor is 0,75 mm. The laser triangulation sensor optoNCDT 1700-20 – also from Micro-Epsilon – has a resolution of 1,5 μm. A CCD array is used as the receiver element in this sensor. The sensor is also able to handle difficult surfaces, such as a shiny black or plastic surface.

For more information contact Associated Technology, +27 (0)11 802 3320, [email protected], www.associated-technology.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Identifying interference in 5G and LTE networks
Test & Measurement
The latest Field Master software release provides a dual display of the LTE or 5G Frame structure, with automatic placement of gates on the Uplink slots alongside the RF spectrum of the gated time slots.

Read more...
High-speed AWG generates up to 20 sine waves
Vepac Electronics Test & Measurement
Spectrum Instrumentation has released a new firmware option for its range of versatile 16-bit Arbitrary Waveform Generators, with sampling rates up to 1,25 GS/s and bandwidths up to 400 MHz.

Read more...
Digitisers upgraded with pulse generator option
Vepac Electronics Test & Measurement
Spectrum Instrumentation has added the Digital Pulse Generator option to its ultrafast digitisers (with up to 10 GS/s speed) and arbitrary waveform generators.

Read more...
Network Master Pro to provide support of OpenZR+
Tamashi Technology Investments Test & Measurement
Anritsu Corporation has introduced the 400G (QSFP-DD) multi-rate module MU104014B that supports the new interface standard.

Read more...
Upgrade brings extra layer of detection to Fluke’s acoustic imagers
Comtest Test & Measurement
The firmware 5.0 update helps to boost efficiency and allows maintenance technicians to scan large areas quickly, and visually pinpoint technical issues before they become critical.

Read more...
Companies collaborate on EnviroMeter
Avnet Silica Test & Measurement
STMicroelectronics and Mobile Physics have joined forces to create EnviroMeter for accurate air-quality monitoring on smartphones. Time-of-flight optical sensing enables an accurate personal air quality monitor and smoke detector.

Read more...
PCB test points
Vepac Electronics Test & Measurement
Maintaining these access points in the final production versions will prove invaluable during the life of the equipment for service, adjustment, and debug, or repair activities.

Read more...
RFID reader
Test & Measurement
The EXA81 from Brady turns any smartphone or tablet into a personal radar that can pick up radio signals from all RFID-labelled items.

Read more...
Proximity sensor with VCSEL
Avnet Abacus Test & Measurement
Vishay’s newest small package proximity sensor, the VCNL36828P, combines low idle current with an I2C interface and smart dual slave addressing.

Read more...
CNH data output devices for AI applications
Altron Arrow Test & Measurement
STMicroelectronics’ CH family of time-of-flight sensor devices feature compact and normalised histogram (CNH) data output for artificial intelligence applications requiring raw data from a high-performance multizone ToF sensor.

Read more...