Circuit & System Protection


Design consequences of geometry 'shrinks'

2 November 2005 Circuit & System Protection

As we all know, the process geometries of both digital and analog integrated circuits are continually shrinking - with the clear advantages of lower power requirements, silicon areas and prices.

However, this reduction in geometry size does have implications for board designs. A simple substitution of a device manufactured with a 0,25 μm (micron) process in place of one manufactured in a 0,7 μm process can produce unexpected results.

Why is this? In theory, nothing has changed, but the evidence contradicts this. One option is to avoid using smaller-geometry devices, but this is very short-sighted. Such a decision means that systems will not benefit from lower power-supply voltages, faster speeds and lower cost - making them uncompetitive in a very short time.

The best approach is to design in the expectation that geometries will continue to shrink. An important issue to consider is increased susceptibility to electrostatic discharge (ESD). Smaller-geometry devices are less able to absorb high-voltage transients and lack robustness around high currents. The manufacturers' standards are not reduced, with a 2000 V r.m.s. to 4000 V r.m.s. ESD tolerance (Human Body Model). However, their tests look for catastrophic failures while the end-user can experience RAM contamination caused by electromagnetic interference (EMI) or electrical fast transient (EFT) signals.

A number of approaches can help with this problem, including protection circuits (MOVs, transient suppressors), microcontroller or processor pin protection (I/O, interrupt, reset pins), or firmware recovery techniques (WDT, register refresh), etc. All of these techniques help to produce a more-robust design, but the most significant results are achieved by layout optimisation.

To move to smaller-geometry devices, it is important to look at places on the board layout where spikes and glitches can enter the newly-sensitive circuits. One of the most productive places to look, is at the power-supply tracks. In a typical circuit, buck- or boost-converters provide the power supplies. This type of supply is inherently noisy, but there is also the risk of added EFT signals, in the form of voltage or current spikes. These may be quite acceptable in circuits using larger-geometry devices, but can cause problems as smaller geometries are used. A general rule-of-thumb is to minimise these effects by managing the power and ground traces (or planes). Finally, the circuit has always required decoupling or bypass capacitors, but now, accurate selection is critical. Figure 1 illustrates a range of techniques that offer different levels of effectiveness.

Figure 1. Connecting several devices with one ground and V<sub>DD</sub> trace; (a) can became a candidate for ground and power-supply loops. This topology also enhances power-supply glitches. Having ground, or V<sub>DD</sub> jumper (b) is a better solution, but not great. Creating a ground and V<sub>DD</sub> trace from device to device is a better solution (c) between these three. However, the best solution is to have separate ground and power-supply planes (d) in a multilayer board
Figure 1. Connecting several devices with one ground and VDD trace; (a) can became a candidate for ground and power-supply loops. This topology also enhances power-supply glitches. Having ground, or VDD jumper (b) is a better solution, but not great. Creating a ground and VDD trace from device to device is a better solution (c) between these three. However, the best solution is to have separate ground and power-supply planes (d) in a multilayer board

Summary

Of course, these are not new suggestions, but many engineers have discovered that not all of them have to be implemented too carefully for circuits using larger-geometry devices. Now, the situation is changing. As new silicon geometries work their way into designs, board layouts must be optimised with power glitches in mind: add protection circuits such as MOVs and transient suppressors; protect the I/O, interrupt and reset pins of the controller or processor; use firmware recovery techniques such as WDT or 'register refresh' so that they contain the correct values. All of these techniques will help to produce a robust design.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Altron celebrates 60th birthday with a call to rebuild Johannesburg
Altron Arrow News
Altron is celebrating its 60th birthday by honouring Johannesburg’s heritage and encouraging business, government and civil society to come together and respond to our President’s call to rebuild Johannesburg.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
ST MCUs extend ultra-low power innovation
Altron Arrow DSP, Micros & Memory
STMicroelectronics has introduced new STM32U3 microcontrollers with cutting-edge power-saving innovations that ease deployment of smart connected tech, especially in remote locations.

Read more...
Multicell battery monitoring
Altron Arrow Power Electronics / Power Management
The LTC6811 from Analog Devices is a multicell battery stack monitor that measures up to 12 series connected battery cells with a total measurement error of less than 1,2 mV.

Read more...
Clearing the Static: Conductive foot, heel and shoe grounders
Actum Electronics Circuit & System Protection
Conductive foot, heel and shoe grounders are used in electrostatic discharge protected areas to provide a path to ground for static electricity.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
High-voltage step-down DC-DC converter
Altron Arrow Power Electronics / Power Management
The MAX17793 is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over an input voltage range of 3 to 80 V.

Read more...
Clearing the Static: Cleaning in an ESD-protected area
Actum Electronics Circuit & System Protection
Cleaning in a protected electrostatic discharge area is a critical task to maintain the integrity of sensitive electronic components and prevent damage caused by static electricity.

Read more...
High-speed SAR ADC simplifies design
Altron Arrow Analogue, Mixed Signal, LSI
The ADI AD4080 simplifies data converter integration by integrating a low drift reference buffer, low dropout regulators and a 16K result data FIFO buffer.

Read more...