Power Electronics / Power Management


The thermal challenges presented by small packages

21 February 2007 Power Electronics / Power Management

As IC packages get smaller and smaller, new thermal management problems arise. Although these new devices often dissipate the same, or even more power than earlier generations, it is much more difficult to get rid of the heat generated. Good thermal evaluation becomes essential in order to ensure system reliability.

Some simple calculations can help designers to predict the thermal performance of an IC. Lab testing should then be used to verify the results of the calculations, to provide a higher level of confidence.

The example chosen here uses a dual low-drop-out regulator (LDO) in an 8-pin, dual flat no-lead (DFN8) package. Dual LDOs convert a single battery input voltage to two lower output voltages with approximately twice the power dissipation of a single LDO. The DFN8 package also has a lower thermal resistance than its larger counterparts.

The DFN8 package is shown in Figure 1a. For example, with an input voltage of 4,2 V, the first regulator in the package (LDO1) provides a typical output of 2,8 V at 300 mA, while the second regulator (LDO2) generates a typical output of 1,8 V at 150 mA. The power dissipation for the device is 780 mW and the maximum allowable steady-state junction temperature is 125°C.

Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (T<sub>J</sub>), case temperature (T<sub>C</sub>) and ambient temperature (T<sub>A</sub>) are used in the package thermal model (b), where R<sub>&theta;JC</sub> is the junction-case thermal resistance and R<sub>&theta;JA</sub> is the junction-ambient thermal resistance
Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (TJ), case temperature (TC) and ambient temperature (TA) are used in the package thermal model (b), where RθJC is the junction-case thermal resistance and RθJA is the junction-ambient thermal resistance

The thermal resistance, junction-to-ambient (RθJA), of the DFN8 package is specified in the data sheet as 41°C/W. This figure is defined by the four-layer test method described in the JEDEC JESD51-5 and JESD51-7 standards. The test conditions include a four-layer board, copper thickness of 57 g on the outer layers and 28 g on the inner layers.

A first-order thermal calculation can be made by using the elements of the model shown in Figure 1b. Here, power is the 'current source,' temperature is the 'voltage,' and thermal resistance is a 'resistor.' The definitions of the variables are ISOURCE = power in watts, TJ = chip junction temperature in °C, TC = device case temperature in °C, TA = ambient temperature in °C, RθJC = thermal resistance from chip junction to device case in °C/Watt, RθCS = thermal resistance from device case to copper ground plane (PC board) in °C/Watt, and RθSA = thermal resistance from device copper ground plane to ambient (air) in °C/Watt.

If the dual device dissipates 780 mV, the rise in temperature at the junction above ambient is TJ(RISE) = 32°C (using RθqA equal to 41°C/W). The reliability requirement limits the maximum ambient temperature to (125°C-32°C) or 93°C.

It is possible to produce a layout for this dual LDO circuit that only requires a two-layer board. However, this produces very different thermal results. For example, consider a board with a 1,59 mm FR4 substrate and 28 g copper traces, with the traces on the top layer and the copper ground plane on the bottom. Using this board, the junction-to-ambient thermal resistance (RθqA) is 78°C/W.

Measurements of the thermal response of the circuit when it is implemented on a two-layer board shows that the rise in temperature, compared to the four-layer with vias implementation, increases from 32°C to 59°C. Under these conditions, the maximum ambient temperature is (125°C-59°C) or 66°C. This temperature difference is primarily due to lack of internal layers and vias directly into the copper plane, as defined by the JEDEC standard. This example shows that, although data sheet specifications are accurate, the physical implementation of the circuit on the PCB can make a significant difference to the thermal performance of the device.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High reliability memories
Altron Arrow DSP, Micros & Memory
Infineon’s mil-temp memories offer a wide selection of volatile and non-volatile memories for applications that meet QML-Q certifications and offer support for mil-aero applications.

Read more...
Altron celebrates 60th birthday with a call to rebuild Johannesburg
Altron Arrow News
Altron is celebrating its 60th birthday by honouring Johannesburg’s heritage and encouraging business, government and civil society to come together and respond to our President’s call to rebuild Johannesburg.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
Power efficiency and robustness in electronics design
Power Electronics / Power Management
Mouser Electronics recently announced a new eBook in collaboration with Analog Devices highlighting essential strategies for optimising power systems.

Read more...
USB Type-C-powered controllers
Future Electronics Power Electronics / Power Management
Diodes Incorporated has released two USB Type-C PD 3.1 extended power range sink controllers that can be embedded into battery-powered devices.

Read more...
ST MCUs extend ultra-low power innovation
Altron Arrow DSP, Micros & Memory
STMicroelectronics has introduced new STM32U3 microcontrollers with cutting-edge power-saving innovations that ease deployment of smart connected tech, especially in remote locations.

Read more...
Multicell battery monitoring
Altron Arrow Power Electronics / Power Management
The LTC6811 from Analog Devices is a multicell battery stack monitor that measures up to 12 series connected battery cells with a total measurement error of less than 1,2 mV.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
Full telemetry in tiny DC-DC converters
RS South Africa Power Electronics / Power Management
The FS160* series of µPOL DC-DC converters from TDK all offer full telemetry, provide increased performance, and are remarkable for extraordinary power density in the smallest sizes.

Read more...