Power Electronics / Power Management


The thermal challenges presented by small packages

21 February 2007 Power Electronics / Power Management

As IC packages get smaller and smaller, new thermal management problems arise. Although these new devices often dissipate the same, or even more power than earlier generations, it is much more difficult to get rid of the heat generated. Good thermal evaluation becomes essential in order to ensure system reliability.

Some simple calculations can help designers to predict the thermal performance of an IC. Lab testing should then be used to verify the results of the calculations, to provide a higher level of confidence.

The example chosen here uses a dual low-drop-out regulator (LDO) in an 8-pin, dual flat no-lead (DFN8) package. Dual LDOs convert a single battery input voltage to two lower output voltages with approximately twice the power dissipation of a single LDO. The DFN8 package also has a lower thermal resistance than its larger counterparts.

The DFN8 package is shown in Figure 1a. For example, with an input voltage of 4,2 V, the first regulator in the package (LDO1) provides a typical output of 2,8 V at 300 mA, while the second regulator (LDO2) generates a typical output of 1,8 V at 150 mA. The power dissipation for the device is 780 mW and the maximum allowable steady-state junction temperature is 125°C.

Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (T<sub>J</sub>), case temperature (T<sub>C</sub>) and ambient temperature (T<sub>A</sub>) are used in the package thermal model (b), where R<sub>&theta;JC</sub> is the junction-case thermal resistance and R<sub>&theta;JA</sub> is the junction-ambient thermal resistance
Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (TJ), case temperature (TC) and ambient temperature (TA) are used in the package thermal model (b), where RθJC is the junction-case thermal resistance and RθJA is the junction-ambient thermal resistance

The thermal resistance, junction-to-ambient (RθJA), of the DFN8 package is specified in the data sheet as 41°C/W. This figure is defined by the four-layer test method described in the JEDEC JESD51-5 and JESD51-7 standards. The test conditions include a four-layer board, copper thickness of 57 g on the outer layers and 28 g on the inner layers.

A first-order thermal calculation can be made by using the elements of the model shown in Figure 1b. Here, power is the 'current source,' temperature is the 'voltage,' and thermal resistance is a 'resistor.' The definitions of the variables are ISOURCE = power in watts, TJ = chip junction temperature in °C, TC = device case temperature in °C, TA = ambient temperature in °C, RθJC = thermal resistance from chip junction to device case in °C/Watt, RθCS = thermal resistance from device case to copper ground plane (PC board) in °C/Watt, and RθSA = thermal resistance from device copper ground plane to ambient (air) in °C/Watt.

If the dual device dissipates 780 mV, the rise in temperature at the junction above ambient is TJ(RISE) = 32°C (using RθqA equal to 41°C/W). The reliability requirement limits the maximum ambient temperature to (125°C-32°C) or 93°C.

It is possible to produce a layout for this dual LDO circuit that only requires a two-layer board. However, this produces very different thermal results. For example, consider a board with a 1,59 mm FR4 substrate and 28 g copper traces, with the traces on the top layer and the copper ground plane on the bottom. Using this board, the junction-to-ambient thermal resistance (RθqA) is 78°C/W.

Measurements of the thermal response of the circuit when it is implemented on a two-layer board shows that the rise in temperature, compared to the four-layer with vias implementation, increases from 32°C to 59°C. Under these conditions, the maximum ambient temperature is (125°C-59°C) or 66°C. This temperature difference is primarily due to lack of internal layers and vias directly into the copper plane, as defined by the JEDEC standard. This example shows that, although data sheet specifications are accurate, the physical implementation of the circuit on the PCB can make a significant difference to the thermal performance of the device.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

ABB’s Mission to Zero drives South Africa’s energy transition
ABB Electrification Products Power Electronics / Power Management
ABB Electrification is charting a bold path towards a net-zero future with its Mission to Zero programme, a blueprint that combines energy efficiency, electrification, and digital innovation to accelerate the transition to clean energy.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Driving power, defining performance
Future Electronics Power Electronics / Power Management
Vishay’s portfolio of inductors, current sense resistors, and MOSFETs provides a comprehensive solution for intelligent power management.

Read more...
Battery simulator module simplifies BMS testing
Test Dynamics Power Electronics / Power Management
The PXI/PXIe solution from Pickering Interfaces offers a scalable, modular design for faster development cycles, lower total cost of ownership, and improved safety.

Read more...
DC PSU: The cornerstone for efficient solar-storage systems
Vepac Electronics Power Electronics / Power Management
PV energy storage systems are evolving and DC power supplies, with their technical characteristics that are naturally compatible with new energy, have become a key carrier for improving system energy efficiency.

Read more...
Why local manufacturing, maintenance and support are key to the success of South Africa’s energy future
Power Electronics / Power Management
Although new renewable generation capacity is being developed, the current transmission infrastructure may not fully support the connection of these sources to the national grid or adequately deliver power to areas of high demand.

Read more...
Converter power modules for 48 V networks
Altron Arrow Power Electronics / Power Management
The economic and quality-of-life benefits of electrification is driving the adoption of HV to 48 V DC-DC conversion across many markets with 48 V power modules becoming more common.

Read more...
How a vision AI platform and the STM32N6 can turn around an 80% failure rate for AI projects
Altron Arrow AI & ML
he vision AI platform, PerCV.ai, could be the secret weapon that enables a company to deploy an AI application when so many others fail.

Read more...
Infineon’s OPTIGA for more secure AI and ML models
Future Electronics AI & ML
Infineon Technologies provides its OPTIGA Trust M security solution to Thistle Technologies for embedded computing products.

Read more...
Memory for asset tracking
Altron Arrow DSP, Micros & Memory
The Page EEPROM, ST’s latest memory, has been designed for efficient datalogging and fast firmware upload/download in battery-operated devices.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved