Power Electronics / Power Management


The thermal challenges presented by small packages

21 February 2007 Power Electronics / Power Management

As IC packages get smaller and smaller, new thermal management problems arise. Although these new devices often dissipate the same, or even more power than earlier generations, it is much more difficult to get rid of the heat generated. Good thermal evaluation becomes essential in order to ensure system reliability.

Some simple calculations can help designers to predict the thermal performance of an IC. Lab testing should then be used to verify the results of the calculations, to provide a higher level of confidence.

The example chosen here uses a dual low-drop-out regulator (LDO) in an 8-pin, dual flat no-lead (DFN8) package. Dual LDOs convert a single battery input voltage to two lower output voltages with approximately twice the power dissipation of a single LDO. The DFN8 package also has a lower thermal resistance than its larger counterparts.

The DFN8 package is shown in Figure 1a. For example, with an input voltage of 4,2 V, the first regulator in the package (LDO1) provides a typical output of 2,8 V at 300 mA, while the second regulator (LDO2) generates a typical output of 1,8 V at 150 mA. The power dissipation for the device is 780 mW and the maximum allowable steady-state junction temperature is 125°C.

Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (T<sub>J</sub>), case temperature (T<sub>C</sub>) and ambient temperature (T<sub>A</sub>) are used in the package thermal model (b), where R<sub>&theta;JC</sub> is the junction-case thermal resistance and R<sub>&theta;JA</sub> is the junction-ambient thermal resistance
Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (TJ), case temperature (TC) and ambient temperature (TA) are used in the package thermal model (b), where RθJC is the junction-case thermal resistance and RθJA is the junction-ambient thermal resistance

The thermal resistance, junction-to-ambient (RθJA), of the DFN8 package is specified in the data sheet as 41°C/W. This figure is defined by the four-layer test method described in the JEDEC JESD51-5 and JESD51-7 standards. The test conditions include a four-layer board, copper thickness of 57 g on the outer layers and 28 g on the inner layers.

A first-order thermal calculation can be made by using the elements of the model shown in Figure 1b. Here, power is the 'current source,' temperature is the 'voltage,' and thermal resistance is a 'resistor.' The definitions of the variables are ISOURCE = power in watts, TJ = chip junction temperature in °C, TC = device case temperature in °C, TA = ambient temperature in °C, RθJC = thermal resistance from chip junction to device case in °C/Watt, RθCS = thermal resistance from device case to copper ground plane (PC board) in °C/Watt, and RθSA = thermal resistance from device copper ground plane to ambient (air) in °C/Watt.

If the dual device dissipates 780 mV, the rise in temperature at the junction above ambient is TJ(RISE) = 32°C (using RθqA equal to 41°C/W). The reliability requirement limits the maximum ambient temperature to (125°C-32°C) or 93°C.

It is possible to produce a layout for this dual LDO circuit that only requires a two-layer board. However, this produces very different thermal results. For example, consider a board with a 1,59 mm FR4 substrate and 28 g copper traces, with the traces on the top layer and the copper ground plane on the bottom. Using this board, the junction-to-ambient thermal resistance (RθqA) is 78°C/W.

Measurements of the thermal response of the circuit when it is implemented on a two-layer board shows that the rise in temperature, compared to the four-layer with vias implementation, increases from 32°C to 59°C. Under these conditions, the maximum ambient temperature is (125°C-59°C) or 66°C. This temperature difference is primarily due to lack of internal layers and vias directly into the copper plane, as defined by the JEDEC standard. This example shows that, although data sheet specifications are accurate, the physical implementation of the circuit on the PCB can make a significant difference to the thermal performance of the device.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ryzen-based computer on module
Altron Arrow AI & ML
SolidRun announced the launch of its new Ryzen V3000 CX7 Com module, configurable with the eight-core/16-thread Ryzen Embedded V3C48 processor.

Read more...
Robust and customisable SBC
Altron Arrow DSP, Micros & Memory
Pairing the powerful i.MX8M Plus System on Module (SoM) from SolidRun, which features the i.MX 8M Plus SoC from NXP, this high-performance SBC is set to transform industrial environments.

Read more...
New family supports future cryptography
Altron Arrow DSP, Micros & Memory
NXP has introduced its new i.MX 94 family, which contains an i.MX MPU with an integrated time-sensitive networking (TSN) switch, enabling configurable, secure communications with rich protocol support in industrial and automotive environments.

Read more...
NXP’s all-purpose microcontroller series
Altron Arrow DSP, Micros & Memory
NXP has released its MCX A14x and A15x series of all-purpose microcontrollers which are part of the larger MCX portfolio that shares a common Arm Cortex-M33 core platform.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wine farm turns to solar installation for power
Current Automation Power Electronics / Power Management
Slanghoek Wine farm opted into a power purchase agreement to lower overall electricity costs and enter a true sustainable future, with a price-competitive edge on lower running costs.

Read more...
Industrial PSU family
Brabek Power Electronics / Power Management
The RACPRO1 family of PSUs supports a universal DC input voltage range from 430 to 850 V DC, allowing the parts to support renewable energy and microgrid applications.

Read more...
Integrated POL voltage regulators
EBV Electrolink Power Electronics / Power Management
Infineon’s TDA38807 and TDA38806 are their highest density high-efficiency integrated point-of-load (IPOL) solutions for smart enterprise systems.

Read more...
Low noise 3-axis MEMS accelerometers
Altron Arrow DSP, Micros & Memory
The ADXL357 and ADXL357B from Analog Devices are digital outputs, low noise density, low 0 g offset drift, low power, three-axis accelerometers with selectable measurement ranges.

Read more...