Power Electronics / Power Management


The thermal challenges presented by small packages

21 February 2007 Power Electronics / Power Management

As IC packages get smaller and smaller, new thermal management problems arise. Although these new devices often dissipate the same, or even more power than earlier generations, it is much more difficult to get rid of the heat generated. Good thermal evaluation becomes essential in order to ensure system reliability.

Some simple calculations can help designers to predict the thermal performance of an IC. Lab testing should then be used to verify the results of the calculations, to provide a higher level of confidence.

The example chosen here uses a dual low-drop-out regulator (LDO) in an 8-pin, dual flat no-lead (DFN8) package. Dual LDOs convert a single battery input voltage to two lower output voltages with approximately twice the power dissipation of a single LDO. The DFN8 package also has a lower thermal resistance than its larger counterparts.

The DFN8 package is shown in Figure 1a. For example, with an input voltage of 4,2 V, the first regulator in the package (LDO1) provides a typical output of 2,8 V at 300 mA, while the second regulator (LDO2) generates a typical output of 1,8 V at 150 mA. The power dissipation for the device is 780 mW and the maximum allowable steady-state junction temperature is 125°C.

Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (T<sub>J</sub>), case temperature (T<sub>C</sub>) and ambient temperature (T<sub>A</sub>) are used in the package thermal model (b), where R<sub>&theta;JC</sub> is the junction-case thermal resistance and R<sub>&theta;JA</sub> is the junction-ambient thermal resistance
Figure 1. The dimensions of this DFN8 package (a) is 3 x 3 mm. The chip junction temperature (TJ), case temperature (TC) and ambient temperature (TA) are used in the package thermal model (b), where RθJC is the junction-case thermal resistance and RθJA is the junction-ambient thermal resistance

The thermal resistance, junction-to-ambient (RθJA), of the DFN8 package is specified in the data sheet as 41°C/W. This figure is defined by the four-layer test method described in the JEDEC JESD51-5 and JESD51-7 standards. The test conditions include a four-layer board, copper thickness of 57 g on the outer layers and 28 g on the inner layers.

A first-order thermal calculation can be made by using the elements of the model shown in Figure 1b. Here, power is the 'current source,' temperature is the 'voltage,' and thermal resistance is a 'resistor.' The definitions of the variables are ISOURCE = power in watts, TJ = chip junction temperature in °C, TC = device case temperature in °C, TA = ambient temperature in °C, RθJC = thermal resistance from chip junction to device case in °C/Watt, RθCS = thermal resistance from device case to copper ground plane (PC board) in °C/Watt, and RθSA = thermal resistance from device copper ground plane to ambient (air) in °C/Watt.

If the dual device dissipates 780 mV, the rise in temperature at the junction above ambient is TJ(RISE) = 32°C (using RθqA equal to 41°C/W). The reliability requirement limits the maximum ambient temperature to (125°C-32°C) or 93°C.

It is possible to produce a layout for this dual LDO circuit that only requires a two-layer board. However, this produces very different thermal results. For example, consider a board with a 1,59 mm FR4 substrate and 28 g copper traces, with the traces on the top layer and the copper ground plane on the bottom. Using this board, the junction-to-ambient thermal resistance (RθqA) is 78°C/W.

Measurements of the thermal response of the circuit when it is implemented on a two-layer board shows that the rise in temperature, compared to the four-layer with vias implementation, increases from 32°C to 59°C. Under these conditions, the maximum ambient temperature is (125°C-59°C) or 66°C. This temperature difference is primarily due to lack of internal layers and vias directly into the copper plane, as defined by the JEDEC standard. This example shows that, although data sheet specifications are accurate, the physical implementation of the circuit on the PCB can make a significant difference to the thermal performance of the device.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

RF arrestor provides robust protection
RFiber Solutions Power Electronics / Power Management
NexTek’s range of coaxial RF surge and lightning arrestors are designed and built to provide robust protection for any radio or coaxial RF transmission application.

Read more...
Wide-Bandgap Developer Forum 2025
Power Electronics / Power Management
To give designers the ultimate in design flexibility, the entire range of WBG power semiconductors will be provided including discretes, modules, and highly integrated solutions ranging from 40 V to 700 V for GaN and 400 V to 3,3 kV for SiC.

Read more...
Latest MotorXpert software drives FOC motors without shunts or sensors
EBV Electrolink Power Electronics / Power Management
Power Integrations has announced MotorXpert v3.0, a software suite for configuration, control and sensing of BLDC inverters that utilise the company’s BridgeSwitch motor-driver ICs.

Read more...
New 5 kW and 8 kW hybrid inverters
Current Automation Power Electronics / Power Management
Switching time from on-grid to off-grid mode is a rapid 5 ms allowing for protection of sensitive electronic equipment.

Read more...
Power relays for energy management applications
Future Electronics Power Electronics / Power Management
The Panasonic Industry HE-R Series is an energy management relay designed for single-phase or 3-phase AC charging units, combining high capacity, high switching, and low operating power into a small size power relay.

Read more...
Programmable switching DC PSU series
Vepac Electronics Power Electronics / Power Management
The SPS6000X Series from Siglent is a programmable switching DC power supply with a wide range of single output and constant power features.

Read more...
Tiny MLCCs at 1250 V
RS South Africa Power Electronics / Power Management
TDK Corporation has expanded its CGA series for automotive and C series for commercial multilayer ceramic capacitors to 10 nF at 1250 V in 3225 size.

Read more...
High-speed SAR ADC simplifies design
Altron Arrow Analogue, Mixed Signal, LSI
The ADI AD4080 simplifies data converter integration by integrating a low drift reference buffer, low dropout regulators and a 16K result data FIFO buffer.

Read more...
Arduino platform with Analog Devices technology for flexible industrial control
Altron Arrow Editor's Choice DSP, Micros & Memory
Software-configurable systems enable industrial OEMs to deliver unprecedented flexibility to the factory floor, while simplifying product complexity.

Read more...
Advanced eMMC storage solutions
Future Electronics DSP, Micros & Memory
Alliance Memory provides advanced NAND flash memory storage solutions that follow the JEDEC eMMC v5.1 standard to meet the growing demand for efficient, high-capacity storage solutions in today’s digital era.

Read more...