Power Electronics / Power Management


Choosing the right power management bus for portable system designs

2 June 2004 Power Electronics / Power Management

Portable system designers are continually struggling to add more innovative features and at the same time minimise power consumption. Thus, designers must integrate system power management components, which add higher levels of intelligence and system communication to improve overall efficiency and extend system runtime.

They must find a way to add power management control for new functions without increasing board complexity. To achieve that, they must limit the use of pins on power management devices as well as extend their product's feature set without using up all the GPIO pins on their microcontroller.

There are three basic types of interfaces for power management functions, which designers can choose from: a parallel bus; a serial bus; a single-wire bus.

Parallel approach

From a hardware and software viewpoint, this is the simplest method. It is comprised of independent parallel control lines and provides a separate GPIO line to each enable line of power components.

Although highly effective, it also presents specific expandability limitations:

* It requires more pins on the microcontroller and peripheral components than any other interface option.

* It occupies significantly more PCB real estate to route individual lines - a primary concern in space-critical portable systems.

* Clamshell handsets and PDAs use a flex PCB to connect the motherboard PCB with a daughterboard. Many of the functions on the daughterboard require individual control lines and running a large number of lines across the flex PCB drives up cost and negatively impacts system reliability.

Serial approach

The I2C and SMBus have been proven to be the most popular serial interfaces in portable designs. Multiple slave devices of a single bus are supported by these serial architectures that simplify the communication between peripherals.

Tradeoffs are inevitable between these architectures, serial buses use fewer wires than the parallel buses and this space gain comes at the cost of speed:

* 500 Kbps throughput rates or above are uncommon.

* The designer is forced to look at extensive hardware solutions to solve the complex timing mechanisms used by the serial architecture.

* Minimum of one line each for data, clock and ground is required which is unacceptable in space-constrained devices.

Single-wire approach

To lower cost and to simplify the design, single-wire interfaces are used to supply control and signalling. AnalogicTech's S2Cwire single-wire bus offers relaxed timing requirements. With the microcontroller programmed to run fast or slow, a local clock or precise master is not needed for the slave device. This offers easier hardware and software implementation. The S2Cwire architecture of counting clock edges increments a counter which steps through a ROM build into the slave device to perform various programming functions.

Data read-back and addressability options that is offered on an I2C, is however, not offered on the S2Cwire. However, for example, in portable system lighting (white or RGB LEDs), designers can eliminate the PWM control signal and programmable logarithmic brightness settings can be provided instead. This in turn offers superior control over the brightness spectrum via software.

Entirely new approaches are offered by these single-wire interfaces. For instance, a single-wire interface with multiple independent load switches and a group of I/O expander load switches will allow engineers to expand the I/O capabilities with minimal cost and effort. Previously a discrete MOSFET and multiple control lines solution were used, now five functions can be controlled with a single-wire in a device 2 x 2 mm, while consuming just a few microamps of current.

Conclusion

To meet the ongoing challenge of adding new functions as well as continuing to squeeze the physical size of their systems, designers have to explore all of their interface options to find the most power efficient and cost effective implementation possible.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power efficiency and robustness in electronics design
Power Electronics / Power Management
Mouser Electronics recently announced a new eBook in collaboration with Analog Devices highlighting essential strategies for optimising power systems.

Read more...
USB Type-C-powered controllers
Future Electronics Power Electronics / Power Management
Diodes Incorporated has released two USB Type-C PD 3.1 extended power range sink controllers that can be embedded into battery-powered devices.

Read more...
Multicell battery monitoring
Altron Arrow Power Electronics / Power Management
The LTC6811 from Analog Devices is a multicell battery stack monitor that measures up to 12 series connected battery cells with a total measurement error of less than 1,2 mV.

Read more...
Full telemetry in tiny DC-DC converters
RS South Africa Power Electronics / Power Management
The FS160* series of µPOL DC-DC converters from TDK all offer full telemetry, provide increased performance, and are remarkable for extraordinary power density in the smallest sizes.

Read more...
Power IC supplies 1650 W
EBV Electrolink Power Electronics / Power Management
Power Integrations has announced a two-fold increase in power output from the HiperLCS-2 chipset with the new device now being able to deliver up to 1650 W of continuous output power.

Read more...
High-voltage step-down DC-DC converter
Altron Arrow Power Electronics / Power Management
The MAX17793 is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over an input voltage range of 3 to 80 V.

Read more...
High-voltage contactors
RS South Africa Power Electronics / Power Management
TDK Corporation has announced two new additions to its high-voltage contactor portfolio for harsh environments: the HVC43MC with integrated mirror contact and the HVC45 with enhanced short-circuit current handling capability.

Read more...
Chokes rated at 36 A
RS South Africa Power Electronics / Power Management
TDK Corporation has launched the EPCOS SurfIND series, a new range of current-compensated ring core double chokes for high currents and surface mounting.

Read more...
RF arrestor provides robust protection
RFiber Solutions Power Electronics / Power Management
NexTek’s range of coaxial RF surge and lightning arrestors are designed and built to provide robust protection for any radio or coaxial RF transmission application.

Read more...
Wide-Bandgap Developer Forum 2025
Power Electronics / Power Management
To give designers the ultimate in design flexibility, the entire range of WBG power semiconductors will be provided including discretes, modules, and highly integrated solutions ranging from 40 V to 700 V for GaN and 400 V to 3,3 kV for SiC.

Read more...