Editor's Choice


Identifying and remedying lead-acid battery failures

27 February 2019 Editor's Choice Power Electronics / Power Management

Lead-acid batteries are widely used in telecommunication and UPS applications. It is well known that proper management and regular maintenance can extend the life of a battery, but what are the possible causes of battery failure and what procedures should be undertaken if the battery fails? The following are the common battery error scenarios and handling instructions.

Battery leakage

There are four possible causes for a lead-acid battery leakage. First, the upper cover and battery container might not be well sealed, or the sealing glue could be cracked due to impact damage. Second, the safety valve may have failed to function, resulting in acid gas leakage or acid spillage. Third, the terminal glue might not be completely hardened, which leads to the acid gas or acid electrolyte leaking around the terminals. And fourth, the battery container could be cracked or broken in places.

To determine the cause and action to be taken, the battery must be visually inspected to determine where the acid is leaking from. The top cover should be opened to see if there are any traces of acid leakage around the safety valve, following which the safety valve needs to be removed in order to check the electrolyte level inside the battery.

After completing the above steps, if no defects are found then an air tightness test should be performed. Finally, the battery needs to be charged in order to check if there are any electrolyte leaks. If the battery still leaks, the defective unit must be replaced and should not be used as it is unable to support the power load. Moreover, it may cause damage to the equipment and possible personal injury.

Battery container deformation

The charge and discharge reaction of a valve regulated lead-acid (VRLA) battery can be expressed by the following chemical reaction:

During the reaction, it causes electrolysis of the water content of the electrolyte, which generates O2 (oxygen) gas from the positive plate and H2 (hydrogen) gas from the negative plate. If oxygen and hydrogen escape, the battery will gradually dry out and eventually shorten the battery life.

The design of the VRLA battery greatly reduces the water loss during charging, where gases generated during the charge cycle are recombined in a so-called ‘oxygen cycle’. During charging, oxygen is generated from the positive plate and reacts with the sponge lead of the negative plate. When charging continues, the oxygen will recombine with the hydrogen being generated by the negative plate to form water. The water content of the electrolyte therefore remains at the same level unless the charging rate is too high.

The common charging problems can be roughly divided into two categories: undercharging and overcharging. If the charge voltage is too low or the charging time is insufficient, the current flow will stop before the battery is fully charged. Undercharging will result in gradual loss of operation time and capacity within the successive charge/discharge cycles. If the condition persists it will result in some of the lead sulphate remaining on the electrodes, resulting is the permanent loss of battery capacity.

On the other hand, overcharging will cause excessive gassing and drying out of the electrolyte, which may contribute to the risk of thermal runaway. After reaching full charge, excessive current will flow into the battery. This high charge voltage causes water decomposition in the electrolyte and the resultant premature ageing of the battery. As the battery temperature increases, so too it will accept more current and it will heat up even further. This is called thermal runaway and it will cause serious damage to the battery.

Thermal runaway may be caused by overcharging, excessively high recharge current, short circuited cells, a high ambient temperature working environment, grounding faults or a combination of these. This will ultimately lead to the battery container swelling up or deforming. Thermal runaway could also result in the inability of battery to support the power load, the emission of hydrogen sulphide, and even worse, may cause the battery to catch fire.

The user should pay careful attention to the potential risks that may be caused by thermal runaway. The faulty battery must be replaced and the cause of the thermal runaway condition corrected.

If a group of batteries is deformed at the same time, the battery voltage should be checked. If the voltage is normal, then the voltage of individual cells should be measured to determine whether they are short-circuited. If there is no short circuit, the deformation is most likely caused by thermal runaway due to overcharging.

The ambient temperature should be checked to ensure that the battery is not installed or operating in a high ambient temperature environment. Charging parameters of the battery charger must be checked to ensure that the voltage setting is not too high. If the charger is defective, it must be replaced with a charger that has a quality certificate and an overcharge protection function.

Individual battery performance lags behind

The balancing of a battery pack connected in series can be quite challenging. There will always be the possibility of under-performing batteries in the pack due to various reasons such as production flaws, raw material quality, incorrect usage or lack of maintenance.

If this occurs, the user should first charge the battery pack and then discharge it, and then measure the voltage of each battery during the discharging cycle to identify the under-performing battery which lacks discharge capacity. The under-performing battery can then be recharged, while ensuring that the battery temperature does not exceed 50°C.

If the battery capacity cannot be recovered after repeated charge/discharge procedures, the battery may have a short circuit problem, or the active material of the plates may have deteriorated. It could also be an indication that the grid has corroded and expanded, or the electrolyte has dried out, causing the battery capacity to drop and thus unable to recover. In this situation, the user should replace this battery.

On the other hand, one could find that the performance of the battery does not meet the requirements of the system, even if the battery capacity is still greater than the acceptable rated capacity. However, because the load discharge time cannot meet the minimum system requirements, the battery should not continue to be used.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

20 years of precision, progress and purpose – the Jemstech journey
Jemstech Editor's Choice Manufacturing / Production Technology, Hardware & Services
Twenty years ago, Jemstech began as a small, determined venture built on technical excellence and trust. Today, it stands among South Africa’s leading electronic manufacturing service providers.

Read more...
A new era in wire bond inspection
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Viscom is developing a 3D wire bond inspection system that incorporates substantially improved sensors, a high image resolution, and fast image data processing.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Questing for the quantum AI advantage
Editor's Choice AI & ML
Two quantum experts disclose high hopes and realities for this emerging space.

Read more...
From the editor's desk: Progress meets reality
Technews Publishing Editor's Choice
In the first half of 2025, renewable energy, incorporating solar, wind, and to a lesser degree hydropower and bioenergy, has generated more electricity globally than coal did.

Read more...
From ER to effortless: The 15-year journey of Seven Labs Technology
Seven Labs Technology Editor's Choice Manufacturing / Production Technology, Hardware & Services
What started as a business likened to an ‘ER’ for electronic components has today grown into a trusted partner delivering kitting services and full turnkey solutions – taking the effort out of electronics and helping customers truly ‘Move to Effortless.’

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
Interlynx-SA: Engineering SA’s digital backbone
Interlynx-SA Editor's Choice
At the heart of the industrial shift towards digitalisation lies the growing demand for telemetry, Industrial IoT (IIoT), advanced networking, and robust data solutions, and Interlynx-SA is meeting this demand.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
Grinn Global: From design house to SoM innovator
Editor's Choice
From its beginnings as a small electronic design house, Grinn Global has moved into the spotlight as a system-on-module innovator working alongside technology giants like MediaTek.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved