Analogue, Mixed Signal, LSI


Breakthrough in 3D IC design

12 November 2008 Analogue, Mixed Signal, LSI

One of the anticipated limitations in the field of electronics that is likely to be faced at some point in the future is that it might become impossible to juxtapose more chips on a circuit board. This in turn might limit the capabilities of future processors.

Significant strides are being made by investigators from around the globe to unveil solutions to address the associated challenges of this problem. Amongst the suggested solutions is the expansion of circuitry in the vertical direction rather that the conventional horizontal orientation – that is, to shift from two-dimensional (2D) circuit configuration to three-dimensional (3D) chip configuration.

An archetypal circuit, which has marked the realisation of this technology transformation, is being developed at the University of Rochester (UofR) in New York. Engineers from the university’s department of electrical and computer engineering have developed what they claim is the first-ever 3D synchronisation circuitry, which operates at 1,4 gigahertz frequency.

The scientists at UofR refer to this circuitry as the cube. They are also expecting this novel technology to extensively enhance the capabilities of processors beyond what was possible to achieve with a conventional 2D microchip.

The approach adopted for the fabrication of the 3D chip is a unique procedure, which involves drilling millions of holes through layers of insulating material, which are employed for providing electrical isolation between the multiple layers of circuitry. Through this technique, myriads of vertical electrical connectivity are enabled between the transistors across different layers.

The factor that clearly distinguishes UofR’s work from prior attempts to create 3D processors is that the new chip does not involve stacking a number of regular processors on top of one another. The circuit was optimally designed to enable the execution of all key processing functions through multiple layers of the processor in a manner that is similar to that of a regular chip design, which functions on a 2D platform.

Possibly the most innovative aspect of the suggested design is that it has pioneered facilitating the synchronicity, power distribution and long-distance signalling for a 3D processor design. According to the researchers, the design favours the miniaturisation trend in electronics, as 3D chips essentially incorporate the entire circuit board, which normally spreads across a comparatively larger surface area. Due to the shorter distances that are to be covered by the electrical signals, the operational speeds are expected to increase by at least 10 times.

The vertical design has not yet been optimised and there are numerous impediments faced by the design at present. According to the creators of the chip, the task of getting the multiple layers to function in harmony is quite challenging. This is because an entire circuit board is shrunk and incorporated onto a single cube and multiple layers with different functional speed and frequency with varying power requirements will have to be interfaced. Designing a single control system to work in any chip is another assignment that poses a significant challenge.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Online sensor technology hub
Analogue, Mixed Signal, LSI
Mouser’s sensor content hub offers an extensive collection of articles, blogs, eBooks, and product information from its technical experts and leading manufacturing partners.

Read more...
Ultra-low power MEMS accelerometer
Altron Arrow Analogue, Mixed Signal, LSI
Analog Devices’ ADXL366 is an ultra-low power, 3-axis MEMS accelerometer that consumes only 0,96 µA at a 100 Hz output data rate and 191 nA when in motion-triggered wake-up mode.

Read more...
BT Audio 4 Click board
Dizzy Enterprises Analogue, Mixed Signal, LSI
The BT Audio 4 Click board from MIKROE provides high-quality wireless audio streaming and data comms over Bluetooth.

Read more...
Precision MEMS IMU modules
Altron Arrow Analogue, Mixed Signal, LSI
The ADIS16575/ADIS16576/ADIS16577 from Analog Devices are precision, MEMS IMUs that includes a triaxial gyroscope and a triaxial accelerometer.

Read more...
MEMS with embedded AI processing
Altron Arrow Analogue, Mixed Signal, LSI
STMicroelectronics has announced an inertial measurement unit that combines sensors tuned for activity tracking and high-g impact measurement into a single, space-saving package.

Read more...
High-performance IMU
RS South Africa Analogue, Mixed Signal, LSI
TDK Corporation has announced availability of the new InvenSense SmartMotion ICM-536xx family of high-performance 6-axis IMUs.

Read more...
High-temperature closed-loop MEMS accelerometer
RS South Africa Analogue, Mixed Signal, LSI
This sensor from TDK is a high-temperature MEMS accelerometer with ±14 g input range and a digital interface for measurement while drilling applications.

Read more...
Dual accelerometers on the same die
Altron Arrow Analogue, Mixed Signal, LSI
The LSM6DSV320X is the first mainstream inertial sensor to house a gyroscope alongside two accelerometers, one capable of sensing up to ±16 g and one sensing up to a staggering ±320 g.

Read more...
Dual-range IMU with edge processing
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s innovative LSM6DSV80X combines two accelerometer structures for 16 g and 80 g full-scale sensing, a gyroscope up 4000 dps, and embedded intelligence in a single component.

Read more...
High-reliability isolation amplifiers
EBV Electrolink Analogue, Mixed Signal, LSI
The VIA series of isolation amplifiers from Vishay are designed to deliver exceptional thermal stability and precise measurement capabilities.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved