Interconnection


PCB stacking connectors for millimetre-wave

1 July 2015 Interconnection

Southwest Microwave announced the introduction of a new line of SuperMini connectors for board-to-board stacking applications up to the millimetre-wave RF range of 67 GHz.

The blind-mate connectors maximise electrical performance of the transmission path between connector and circuit while accommodating axial misalignment of up to 0,25 mm and radial misalignment of ±5° via unique bullet and PCB receptacle (jack) designs. With an array of available bullets that enable board-to-board spacing as close as 3 mm, this solution assures transmission line dependability for tightly stacked PCBs.

Designed to optimise matching to circuit for surface and through-hole PCB mounting applications, the connectors are available in smooth bore or detent style vertical and end launch jack configurations for stripline, microstrip and grounded co-planar circuit launch transitions. Additionally, smooth bore and detent style 4-hole flange jack to 2,92 mm (K) jack adaptors are available.

The manufacturer can also supply complete direct solder cable assemblies supporting connectors of varying frequencies to simplify high-performance, push-on test connection to receptacles.

For more information contact Andrew Hutton, RF Design, +27 (0)21 555 8400, [email protected], www.rfdesign.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

mBend cable assemblies
Conical Technologies Interconnection
The mBend cable assemblies from Anoison are designed to meet the growing demand for low-profile coaxial connections in applications where space is limited, and precise bending is necessary right next to the connectors.

Read more...
Configurable DIN rail housings
Wiltron Agencies Interconnection
With PTR HARTMANN’s INS265 design kit, DIN rail housings can be individually configured using a wide range of options.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
u-blox expands NORA-B2 BLE modules
RF Design Telecoms, Datacoms, Wireless, IoT
The new nRF54L chipset-based wireless modules reduce current consumption and double processing capacity, catering to diverse mass market segments.

Read more...
New GNSS passive patch antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The HP24510A from Taoglas is a stacked patch GNSS passive antenna that operates from 1215 to 1610 MHz covering the L1/L2 GNSS spectrum.

Read more...
6 – 18 GHz driver amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The QPA0022D from Qorvo is a high-performance driver amplifier covering a range of 6 to 18 GHz and fabricated on Qorvo’s production 0,15 µm pHEMT process.

Read more...
Connectors for the latest server applications
Spectrum Concepts Interconnection
To deliver high-speed performance, many next-generation server applications will use cables inside the box instead of PCB traces to maintain the signal integrity demanded by high-speed communications.

Read more...
3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
Industrial Ethernet with HARTING solutions
Interconnection
In today’s fast-paced industrial landscape, Ethernet connectivity plays a crucial role in automation, ensuring seamless communication between machines and systems, and HARTING offers a wide range of innovative Ethernet products.

Read more...