Editor's Choice


Transmitting power to remote places

29 February 2024 Editor's Choice Power Electronics / Power Management

Transmitting electrical energy over long distances, for example, inside a factory, is no easy task. Of course, electricians could provide a connection to the power grid at any location in a manufacturing facility. However, this is time-consuming and expensive.

Power over Ethernet (PoE) has existed as an alternative to individual power grid connections for many years. With it, up to 71 W can be delivered to a device (at up to 100 m). PoE uses Cat 5 and higher twisted pair cables, and is employed in numerous applications in which Ethernet cables have already been installed.

A type of PoE called SPoE, also for two-wire cables, represents a new option. With it, up to 52 W can be transmitted via a single two-wire cable. Distances of up to 1 km are possible. Two-wire cables are already being used in many industrial plants for 4 to 20 mA applications. They can easily be used for SPoE. If there’s no existing wiring, new wiring can be added easily, even without the help of an electrician.

Like PoE, SPoE can be used for both data and power transmission. This is significant, because remote electronics usually need power and data connectivity. Figure 1 shows this with the T1L PHY blocks.

Why would you use the SPoE technology to transmit just energy? SPoE is an IEEE-standardised technology that is compatible with SPoE hardware from a variety of different manufacturers, provides comprehensive system telemetry for monitoring the energy transmission state, detects faults, and offers overvoltage protection and ground loop isolation.

An SPoE solution requires a power sourcing equipment (PSE) controller, that is, a circuit that transmits the electrical energy through the two-wire cable, and a powered device (PD) controller that receives the energy from the two-wire cable. Figure 1 shows a point-to-point connection. Star and daisy-chain connections are also possible. If existing cables are used, this reduces the cost and effort required to rewire the circuitry.

PSE controllers are often designed for multiple channels (cables). This is significant for systems that power multiple remote machinery (that is, sensors). The LTC4296-1 from Analog Devices, for example, can supply up to five loads of energy (Figure 2). Each supply line can be up to 1000 m long.

Figure 3 shows a block diagram of a PD receiver circuit with an LTC9111. The energy comes from the two-wire cable. The PD circuit takes care of the classification and monitoring of the line transmission, with the classification specifying the power class that the energy transmission will operate in. If the operated electrical device needs a voltage other than 24 or 55 V, an additional DC-to-DC converter is used.

Another technology besides SPoE is power over data line (PoDL). The two technologies are very similar. SPoE works with a voltage of 24 or 55 V and can bridge distances of up to 1000 m, while PoDL is used in systems at a shorter distance of 15 or 40 m and works with a voltage of 12, 24, or 48 V. PoDL is mainly used in automotive and similar applications, such as construction equipment. SPoE is designed for use in industrial environments.

There are clever ways of delivering power safely through a two-wire pair cable. This makes high-power applications, like intelligence at the edge, possible and reduces costs by using wiring from existing industrial setups.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ryzen-based computer on module
Altron Arrow AI & ML
SolidRun announced the launch of its new Ryzen V3000 CX7 Com module, configurable with the eight-core/16-thread Ryzen Embedded V3C48 processor.

Read more...
Robust and customisable SBC
Altron Arrow DSP, Micros & Memory
Pairing the powerful i.MX8M Plus System on Module (SoM) from SolidRun, which features the i.MX 8M Plus SoC from NXP, this high-performance SBC is set to transform industrial environments.

Read more...
New family supports future cryptography
Altron Arrow DSP, Micros & Memory
NXP has introduced its new i.MX 94 family, which contains an i.MX MPU with an integrated time-sensitive networking (TSN) switch, enabling configurable, secure communications with rich protocol support in industrial and automotive environments.

Read more...
NXP’s all-purpose microcontroller series
Altron Arrow DSP, Micros & Memory
NXP has released its MCX A14x and A15x series of all-purpose microcontrollers which are part of the larger MCX portfolio that shares a common Arm Cortex-M33 core platform.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Low noise 3-axis MEMS accelerometers
Altron Arrow DSP, Micros & Memory
The ADXL357 and ADXL357B from Analog Devices are digital outputs, low noise density, low 0 g offset drift, low power, three-axis accelerometers with selectable measurement ranges.

Read more...
PCIe 7.0 technology. Too soon or not fast enough?
Spectrum Concepts Editor's Choice
Data scientists, AI system architects, IC designers, optical engineers, interconnect providers like Samtec, and other solutions providers, are rethinking system topologies.

Read more...
Infineon launches Edge Ai software solution
Altron Arrow Analogue, Mixed Signal, LSI
Infineon has introduced DEEPCRAFT, a new software solution category brand for Edge AI and machine learning, after the company recognised the huge potential of Edge AI for the market.

Read more...
From the editor's desk: Trekkie on my mind
Technews Publishing Editor's Choice
This year’s exciting announcement was in the non-terrestrial network sector with many NTN chips being released, promising communications from anywhere on Earth.

Read more...