Editor's Choice


LIDAR filters

28 June 2023 Editor's Choice Opto-Electronics

LIDAR (Light Detection and Ranging) is a highly versatile active remote sensing technique that is used in Earth and atmospheric sciences, autonomous vehicles, urban planning, and many other applications. Some of the most important components of LIDAR sensors are the filters that isolate target signals, while preventing sunlight and other extraneous light from reaching the detector.

A wide variety of applications and sensor types exist, from laser altimeters to Raman LIDAR systems, all with different return signal strengths and LIDAR filter requirements. Therefore, LIDAR filters must be designed with the specific application and sensor type in mind to maximise signal-to-noise ratio.

Laser altimeters and other LIDAR sensors scan a pulsed laser across the environment and determine the return time of the reflected signals by calculating the precise position and orientation of the sensor as the signals are emitted and received. To accomplish this, a LIDAR system requires five basic components: a laser, either a mechanical or software-based scanning system, a receiver or photodetector, a GPS unit, and a high-precision clock. Aerial LIDAR systems also require an inertial measurement unit (IMU) to determine orientation.

The basic equation used to determine the distance between the object and the sensor is:


Where R is the range in metres, c is the speed of light, na is the index of refraction of air, t is the time when the signal returns, and tp is the time when the pulse is emitted.

If a single LIDAR pulse only encounters one object, such as bare ground, the result will be a single corresponding return signal. However, since the beam is generally expanded as it is emitted, multiple objects such as tree branches and shrubs can be encountered before the signal reaches the ground, resulting in multiple reflected signals. Depending on the associated software, LIDAR systems will either record these returns as discrete points, or will display the data as a waveform showing each return as a function of time (Figure 1). The result is a data point cloud that can be used to create high-resolution digital elevation models (DEMs) or 3D images of features in the surrounding environment (Figure 2).

LIDAR filters

Although return signals can be isolated using a variety of different filtering technologies, most LIDAR systems employ thin-film interference filters because of their inherent durability and lack of a need for maintenance or calibration. This is an important consideration because many LIDAR sensors are mounted to satellites, aeroplanes, UAVs, autonomous vehicles, and other platforms that require the sensor to function under harsh environmental conditions, with little to no maintenance.

Because of the precise nature of LIDAR return signals, most LIDAR filters are ultra-narrowband thin-film interference filters. These filters must be able to achieve both high transmission over an ultra-narrow bandwidth to isolate the return signal, and deep out-of-band blocking over a large wavelength range to attenuate sunlight and other extraneous light (Figure 3). However, there are many different types of LIDAR systems that each necessarily demand application-specific filter requirements to maximise signal-to-noise ratios.

Laser altimeters, for example, typically require ultra-narrowband interference filters to be less than 1,5 nm at full-width half maximum (FWHM), while achieving over 90% transmission at the laser wavelength and greater than OD6 (-60dB or 0,0001% transmission) out-of-band blocking from ~300 – 1300 nm. Raman LIDAR filters, on the other hand, must have extremely steep edges so that the Raman signal is transmitted to the detector, while the stronger elastic backscatter signals at the laser wavelength are blocked to a level of OD8 (-80 dB or 0,000001% transmission).

LIDAR systems also require that the filters’ thin-film coating must be as uniform as possible. When uniformity is not controlled, the thin-film layer thicknesses vary across the surface of the filter, resulting in a location-dependent wavelength shift of the filter spectrum across the clear aperture. If a filter with uncontrolled uniformity is integrated into a LIDAR system, a large number of LIDAR return signals will end up being blocked by the filter and will not reach the detector. Fortunately, a uniformity-controlled thin-film coating will ensure that target signals will not be blocked by the filter (Figure 4).

In addition, LIDAR filters must also be designed with the sensor platform and environmental conditions in mind. Aerial- and ground-based LIDAR systems operate at temperatures that can range from -40 to 105°C, while satellite LIDAR operating ranges depend on the orbit and thermal control system of the satellite. Therefore, any interference filters integrated into systems that operate at extreme temperatures should be designed to minimise temperature-dependent wavelength shift.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

20 years of precision, progress and purpose – the Jemstech journey
Jemstech Editor's Choice Manufacturing / Production Technology, Hardware & Services
Twenty years ago, Jemstech began as a small, determined venture built on technical excellence and trust. Today, it stands among South Africa’s leading electronic manufacturing service providers.

Read more...
A new era in wire bond inspection
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Viscom is developing a 3D wire bond inspection system that incorporates substantially improved sensors, a high image resolution, and fast image data processing.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Questing for the quantum AI advantage
Editor's Choice AI & ML
Two quantum experts disclose high hopes and realities for this emerging space.

Read more...
From the editor's desk: Progress meets reality
Technews Publishing Editor's Choice
In the first half of 2025, renewable energy, incorporating solar, wind, and to a lesser degree hydropower and bioenergy, has generated more electricity globally than coal did.

Read more...
From ER to effortless: The 15-year journey of Seven Labs Technology
Seven Labs Technology Editor's Choice Manufacturing / Production Technology, Hardware & Services
What started as a business likened to an ‘ER’ for electronic components has today grown into a trusted partner delivering kitting services and full turnkey solutions – taking the effort out of electronics and helping customers truly ‘Move to Effortless.’

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
Interlynx-SA: Engineering SA’s digital backbone
Interlynx-SA Editor's Choice
At the heart of the industrial shift towards digitalisation lies the growing demand for telemetry, Industrial IoT (IIoT), advanced networking, and robust data solutions, and Interlynx-SA is meeting this demand.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
Grinn Global: From design house to SoM innovator
Editor's Choice
From its beginnings as a small electronic design house, Grinn Global has moved into the spotlight as a system-on-module innovator working alongside technology giants like MediaTek.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved