Power Electronics / Power Management


Achieving higher-reliability isolation than traditional EMs can provide

31 August 2022 Power Electronics / Power Management

Relays have been used as switches since before the transistor was invented. The ability to safely control high-voltage systems from lower-voltage signals, as is the case in isolation resistance monitoring, is necessary for the development of many automotive systems. While the technology of electromechanical relays and contactors has improved over the years, it is still challenging for designers to achieve their goals of lifetime reliability and fast switching speeds, along with low noise, shock vibration and power consumption.

Solid-state relays (SSRs) exhibit performance and cost benefits and are rated for different levels of isolation. SSRs also possess advantages over alternative technologies such as electromechanical relays and solid-state photo-relays.

Traditional relay switching solutions

Electromechanical relays (EMRs) are common in high-voltage switching applications. EMRs employ the use of electromagnetic forces to mechanically switch contacts on and off. Given their mechanical nature, EMRs feature an incredibly low on-resistance; their contacts are essentially a metal-to-metal connection.

EMRs do have trade-offs, however, when it comes to switching speeds and reliability. Moving parts inside the relay are a limiting factor, and switching speed is typically in the 5 to 15 ms range. Over time and with use, an EMR can experience failures such as arcing, chattering and welding shut.

Unlike EMRs, photo-relays have no moving parts and provide a high isolation voltage. Photo-relays are an improvement over traditional EMRs; but they also have design considerations such as limitations on the achievable power transfer as well as deterioration of the internal LED. Additionally, photo-relays need an external current-limiting resistor and often use additional field-effect transistors (FETs) to manage the LED’s switched state.

Higher-reliability isolation using SSRs

Solid-state relays from TI are available as switches (with integrated FETs) or drivers for controlling external FETs. TI’s TPSI2140-Q1 isolated switch and TPSI3050-Q1 isolated driver feature higher reliability and longevity compared to EMRs, since they do not experience mechanical deterioration over time. SSRs thus enable a ten times higher lifetime reliability than traditional EMRs. These SSRs can also switch in the microsecond range, orders of magnitude faster than EMRs.

Since the TPSI3050-Q1 and TPSI2140-Q1 integrate power and signal transfer across a single isolation barrier, no secondary bias supply is necessary, making it possible to achieve a small solution size. Figure 1 illustrates the use of the TPSI2140-Q1 isolated switch in a high-voltage system, eliminating external components such as a bias supply and external control circuits.

These solid-state relays also offer advantages over traditional photo-relays and optocouplers. The TPSI2140-Q1 and TPSI3050-Q1 achieve better reliability over photo-relays because there is no LED degradation, and no external control circuits are necessary because the logic-level input can drive the system directly.

These solid-state relays provide the highest dielectric strength at the fastest speed, highest operating temperature and lowest system cost. They also enable more reliable switching in a smaller package.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High-efficiency buck-boost converter
Altron Arrow Power Electronics / Power Management
The MAX77859 is a high-efficiency, high-performance buck-boost converter targeted for systems requiring a wide input voltage range.

Read more...
Revolutionising data centre cooling with FUCHS LUBRICANTS
Power Electronics / Power Management
Traditional air-cooling systems, reliant on space, energy, and water, are no longer sustainable for hyperscale and co-location data centres

Read more...
Powerless is not an option
Power Electronics / Power Management
Uninterruptible Power Supply systems are critical for transitioning and emergency backup power for a short period, until an alternative power source can be established, or the initial power source is restored.

Read more...
Elevate your IoT development
Power Electronics / Power Management
Infineon’s XENSIV Sensor Shield is an evaluation board designed to elevate IoT development. Offering a robust array of sensors for precise data collection, this shield is a powerhouse of sensor technology.

Read more...
Low-cost i.MX development board
Altron Arrow DSP, Micros & Memory
The FRDM i.MX 93 development board from NXP is a low-cost and compact development board featuring the i.MX93 applications processor.

Read more...
Ultrawideband Low Noise Amplifier
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ADL8101 is an ultrawideband, low noise amplifier that operates from 10 kHz to 22 GHz with typical gain and noise figure of 14 dB and 3,5 dB respectively.

Read more...
Full brick DC-DC converter range
Vepac Electronics Power Electronics / Power Management
Featuring a fixed switching frequency and predictable EMI, these DC-DC converters from PowerGood have an output up to 960 W.

Read more...
18 to 44 GHz downconverter module
RFiber Solutions Power Electronics / Power Management
The connectorised module includes RF preselector filters, low-noise amplifiers, programmable attenuation, LO synthesizer, power conditioning, and FPGA control.

Read more...
Smart and secure way to power IT
RS South Africa Power Electronics / Power Management
Delivering more output, security, and control than other devices in its class, Eaton’s new 5P Gen 2 UPS also enables fleet management, remote UPS setting, and remote firmware upgrades.

Read more...
Ryzen-based computer on module
Altron Arrow AI & ML
SolidRun announced the launch of its new Ryzen V3000 CX7 Com module, configurable with the eight-core/16-thread Ryzen Embedded V3C48 processor.

Read more...