News


New material promises outstanding memory density

25 November 2009 News

Despite significant advances in the capacity of data storage in electronic media, the need for denser storage capacity continues unabated.

Technological developments in this field still trail behind the exponential growth of information storage needs. It is becoming harder to increase memory capacities while simultaneously making them smaller and faster. In spite of this, the ongoing attempts to develop alternative storage technologies, especially in smaller devices, have yielded yet another breakthrough in terms of storage density.

Researchers from the North Carolina State University (NCSU) have developed a novel material that is capable of storing 50 times more data than comparable chips available today. The new material synthesised by the researchers shows promising magnetic properties that would enable a chip the size of a fingernail to handle as much as 1 TB (Terabyte, equal to 1024 Gigabytes).

The breakthrough was achieved by adding nickel (Ni) to magnesium oxide (MgO) and modifying the electrical properties of the resulting compound through selective doping. The groundbreaking research was spearheaded by Jagdish Narayan, professor of materials science and engineering at NSCU, and the work is described in a recent issue of the journal JOM. Narayan and team synthesised the Ni-MgO system and, while investigating its magnetic properties, realised that at certain conditions it acts as a perfect paramagnet. Specifically, the engineers were able to induce clustering of Ni ion precipitates on substitutional Mg sites, which can be varied by modifying the annealing time and temperature as per requirements.

Paramagnetism is a form of magnetism occurring only in the presence of an externally applied magnetic field. Unlike ferromagnets, paramagnets do not retain any magnetisation in the absence of an external field, because thermal motion causes the spins to become randomly oriented without it. Thus the total magnetisation will drop to zero when the applied field is removed. The attraction experienced by ferromagnets is non-linear and much stronger, so that it is easily observed, for instance, in magnets on one’s refrigerator.

The team also established clear structure-property correlations to explain the magnetic properties of specimens that ranged from perfectly paramagnetic to fully ferromagnetic. Based on these studies, the researchers were able to clearly ascertain that the clusters of nickel atoms about 10 square nanometres in size could act as memory elements, which would result in over 90% reduction in memory size compared to contemporary devices.

In addition to its applications in data storage, this material also holds significant potential for the field of spintronics. The researchers were able to successfully control the electron spin by manipulating the material, consequently paving the way for harnessing the energy in the electrons’ spin. Spintronics can be exploited for developing more efficient semiconductors as well as efficient memories that dissipate considerably less heat.

Besides holding considerable potential for applications in information storage, the novel Ni-MgO material could also be put to use for the development of ceramic engines with enhanced fuel economies, and the ability to withstand twice the temperatures of normal engines. Moreover, the excellent thermal conductivity of the material is also quite promising for harnessing alternative energy sources such as solar energy.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 464 2402, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Technical resource centre for smart cities
News
Mouser’s infrastructure and smart cities content hub features comprehensive articles, blogs, eBooks, and products from Mouser’s technical team and trusted manufacturing partners.

Read more...
UFS Flash named Best in Show
EBV Electrolink News
KIOXIA Europe GmbH was named as winner in the Memory & Storage category of the Embedded Computing Design (ECD) electronica Best in Show Awards at the recently held electronica 2024.

Read more...
Save the date for Securex South Africa 2025
News
Home to Africa’s largest collection of security solutions, Securex South Africa returns to Gallagher Convention Centre in Midrand from 3 to 5 June 2025.

Read more...
Trina Storage ranked in top 10
News
Amidst the global energy storage market, Trina Storage has once again earned recognition from authoritative institutions with its outstanding innovation capabilities and global layout.

Read more...
2025 outlook for DRAM is poor
News
According to TrendForce, weak demand outlook and rising inventory and supply forecast to pressure DRAM prices down for 2025.

Read more...
Price hike to challenge energy reforms
News
Eskom’s proposed 44% price hike could undermine renewable energy gains despite tech innovation.

Read more...
IO Ninja debugging tool
RF Design News
Tibbo has released a major update to IO Ninja, its versatile communications debugging tool for Windows, Linux, and macOS.

Read more...
Young SA robotics team takes world title
News
In a demonstration of innovation and teamwork, Texpand, a South African youth robotics team based in Cape Town, recently made history by winning the 2024 FIRST Tech Challenge (FTC) World Championships.

Read more...
From the editor's desk: A brave new world
Technews Publishing News
The technology Tesla currently uses in its cars from the batteries, power electronics, controllers, through to the mechanics, gearboxes, and the AI inference computer and software have are incorporated in the development of Optimus, allowing the development of the robot to gain impressive features in a relatively short time span.

Read more...
Seven Labs partnership enhances local electronics distribution
Seven Labs Technology News
Aimed at revolutionising the electronics distribution landscape in South Africa, Seven Labs has announced a partnership with LCSC, one of China’s most reputable electronics distributors.

Read more...