News


Controlling individual bits in quantum computers

5 August 2009 News

Optical lattices use lasers to separate rubidium atoms (pictured in red) for use as information ‘bits’ in neutral-atom quantum processors – prototype devices that designers are trying to develop into full-fledged quantum computers.

Now scientists at the US National Institute of Standards and Technology (NIST) have managed to isolate and control pairs of the rubidium atoms with polarised light, an advance that may bring quantum computing a step closer to reality.

The physicists have overcome a hurdle in quantum computer development, having devised a viable way to manipulate a single bit in a quantum processor without disturbing the information stored in its neighbours. The approach, which makes novel use of polarised light to create ‘effective’ magnetic fields, could bring the long-sought computers a step closer to reality.

A great challenge in creating a working quantum computer is maintaining control over the carriers of information, the ‘switches’ in a quantum processor, while isolating them from the environment. These quantum bits, or qubits, have the uncanny ability to exist in both on and off positions simultaneously, giving quantum computers the power to solve problems conventional computers find intractable, such as breaking complex cryptographic codes.

One approach to quantum computer development aims to use a single isolated rubidium atom as a qubit. Each such rubidium atom can take on any of eight different energy states, so the design goal is to choose two of these energy states to represent the on and off positions. Ideally, these two states should be completely insensitive to stray magnetic fields that can destroy the qubit’s ability to be simultaneously on and off, ruining calculations. However, choosing such field-insensitive states also makes the qubits less sensitive to those magnetic fields used intentionally to select and manipulate them.

“It is a bit of a catch-22,” says NIST’s Nathan Lundblad. “The more sensitive to individual control you make the qubits, the more difficult it becomes to make them work properly.”

To solve the problem of using magnetic fields to control the individual atoms while keeping stray fields at bay, the NIST team used two pairs of energy states within the same atom. Each pair is best suited to a different task: one pair is used as a ‘memory’ qubit for storing information, while the second ‘working’ pair comprises a qubit to be used for computation. While each pair of states is field-insensitive, transitions between the memory and working states are sensitive and amenable to field control. When a memory qubit needs to perform a computation, a magnetic field can make it change hats. And it can do this without disturbing nearby memory qubits.

The NIST team demonstrated this approach in an array of atoms grouped into pairs, using the technique to address one member of each pair individually. Grouping the atoms into pairs, Lundblad says, allows the team to simplify the problem from selecting one qubit out of many to selecting one out of two, which can be done by creating an effective magnetic field, not with electric current as is ordinarily done, but with a beam of polarised light. The polarised light technique, which the NIST team developed, can be extended to select specific qubits out of a large group, making it useful for addressing individual qubits in a quantum processor without affecting those nearby.

“If a working quantum computer is ever to be built,” Lundblad says, “these problems need to be addressed, and we think we have made a good case for how to do it.” But, he adds, the long-term challenge to quantum computing remains that of integrating all of the required ingredients into a single apparatus with many qubits.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Electronic News Digest
News
A brief synopsis of current global news relating to the electronic engineering fields with regards to company finances, general company news, and engineering technologies.

Read more...
Jemstech to produce PCB assemblies for Kamstrup
Jemstech News
Jemstech is pleased to announce that they have successfully concluded a supplier agreement with Kamstrup A/S in Denmark, a leading supplier of intelligent metering solutions in the global market.

Read more...
New appointments at Hiconnex
Hiconnex News
Hiconnex, a leading provider of electronic components and solutions, has announced key appointments to support its continued growth and commitments to its clients.

Read more...
FoundriesFactory service more affordable for smaller OEMs
News
Foundries.io has announced a new, tiered pricing scheme which reduces the cost of its highly regarded FoundriesFactory service for OEMs in the development phase of a new edge AI or Linux OS-based product.

Read more...
DMASS 2024 results
News
The semiconductor business faced a severe downturn, with a 31,9% decrease compared to 2023 and a 30,3% drop in Q4 2024 compared to the same period last year.

Read more...
Using satellite comms to end copper theft
News
According to Transnet COO Solly Letsoalo, the scourge of copper theft could be a thing of the past by eliminating the use of copper cabling and switching to a satellite communication system.

Read more...
Strategic merger: Etion Create and Nanoteq
Etion Create News
Reunert has announced the successful merger of two business units within the Applied Electronics Segment, namely Etion Create and Nanoteq, effective 1 October 2024.

Read more...
Securex South Africa 2025
Specialised Exhibitions News
Securex South Africa 2025 is co-located with A-OSH EXPO, Facilities Management Expo, and Firexpo to provide a time-saver for visitors looking for holistic solutions for their facilities.

Read more...
Chinese AI causes Silicon Valley stocks to tumble
News
Many stocks took a downward spike, with Nvidia being the hardest hit, losing 16,9% after one day’s trading.

Read more...
Silicon Labs 4th quarter results
News
Silicon Labs has reported financial results for the fourth quarter with highlights including a total revenue of $166 million and Home & Life revenue up 11% to $78 million.

Read more...