News


Chip-level fabrication of single-electron devices

21 January 2009 News

Single-electron devices are nanoscale devices that can control the movement of individual electrons. These devices are likely to emerge as a resolution to the industrial demand for the drastic shrinkage of electronic devices, as they hold promise for ultra-high density packaging of electronic components.

Besides miniaturisation, the substitution of conventional electronic devices with single-electron electronic devices provides benefits such as extremely low power consumption and high operational speeds. However, the existing single-electron device fabrication methodologies incur very high costs due to the use of sophisticated technologies for nanoscale pattern definition, such as e-beam lithography, nano-oxidation using scanning tunnelling microscopy (STM)/atomic force microscopy (AFM), mechanically controlled break junctions and electromigration.

The high cost involved and the complexity of the procedures do not favour large-scale production. For over a decade, researchers from around the globe have therefore been striving to devise a cost-effective method to fabricate these devices.

A research team headed by Assistant Professor Seong Jin Koh from the University of Texas at Arlington has now unveiled an innovative technique to fabricate single-electron devices. The invention is said to have overcome the currently existing barriers that have held back the devices’ widespread adoption in a variety of applications.

The team’s approach for constructing the devices involves the use of conventional integrated circuit fabrication equipment and processes, which include photolithography, thin-film deposition and etching. The resultant structure is a complementary metal oxide semiconductor (CMOS) device that incorporates a stack of two electrodes – source and drain – that are separated by a thin layer of dielectric material. Gold nanoparticles are attached to the exposed surface of the stack using self-assembly of monolayers.

This approach is far less expensive when compared to the traditionally employed technologies. It also purportedly enables the parallel assembly of multiple devices simultaneously. In addition to these advantages, the newly constructed device is functional at room temperature. This sets it apart from those that are assembled using traditional methods, as most of the devices that were developed in the past needed to be cooled down to minus 250°C, making them impractical for widespread use.

The single-electron devices are expected to have several potential applications, some of which include the development of highly miniaturised portable memories with very large storage capacity, and highly sensitive measurement instruments to study fundamental problems in physics that are as yet unresolved. Apart from these, they are also expected to be of use in several commercial electronics and aerospace and defence applications.

Having validated the feasibility of the parallel fabrication of these nanoscale devices, the team’s current interest is centred on assembling an integrated system of single-electron transistors. The approach will be similar to that which was employed for the construction of the CMOS system. The team also intends to develop single-electron memories and then logic systems.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the Editor's desk: Growth through inclusivity
Technews Publishing News
As the engineering fields in South Africa continue to make progress toward gender equality, we are finally starting to see the presence and contribution of women in engineering and industrial roles.

Read more...
KITE 2025 proves its value
News
The KwaZulu-Natal Industrial Technology Exhibition (KITE) 2025 confirmed its place as KwaZulu-Natal’s must-attend industrial event, drawing thousands of industry professionals.

Read more...
Otto Wireless Solutions announces promotion of Miyelani Kubayi to technical director
Otto Wireless Solutions News
Otto Wireless Solutions is proud to announce the promotion of Miyelani Kubayi to the position of technical director, effective 1 August 2025.

Read more...
DMASS experiences continued slowdown
News
The European electronic components distribution market continued its downward trajectory in the second quarter of 2025, according to new figures released by DMASS.

Read more...
World-first zero second grid-to-backup power switch
News
JSE-listed cable manufacturer, South Ocean Electric Wire, has completed a solar installation it says marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...

News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
Cobots for opto production line
News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved