Power Electronics / Power Management


The cause of Li-ion battery fires

30 September 2024 Power Electronics / Power Management

Behind the convenience of Li-ion batteries lies a potentially hazardous science. SafeQuip delves into the construction of Li-ion batteries, the phenomenon of thermal runaway, and potential hazards associated with these power sources.

Understanding Li-ion battery construction

At their core, Li-ion batteries consist of three essential components:

1. Anode: This is the negative electrode, typically made of a carbon-based material that stores lithium ions when the battery is charged.

2. Cathode: The positive electrode, often composed of lithium cobalt oxide or other lithium-based compounds, is responsible for receiving and releasing Li-ions during charging and discharging.

3. Electrolyte: This is like the battery’s bloodstream. It is a liquid or gel that helps lithium ions move around between the cathode and anode. It’s important to note here that this liquid or gel is flammable.

These three elements are sandwiched together and housed within a protective casing. The casing serves as a barrier to contain the potentially volatile materials inside the battery.

Thermal runaway

Thermal runaway in Li-ion batteries is a dangerous situation where the battery gets extremely hot, leading to the rapid release of heat and gases, which can result in fires or explosions. Several factors can trigger thermal runaway, including:

• Overcharging: Charging a Li-ion battery beyond its recommended voltage limits can cause the electrolyte to break down, leading to overheating.

• Physical damage: Punctures, crushing, or mechanical stress can compromise the battery’s structure, allowing internal components to come into contact and generate heat.

• High temperatures: Exposure to excessive heat, such as leaving a device in a hot car, can accelerate the onset of thermal runaway.

• Manufacturing defects: Faulty manufacturing processes or substandard materials can weaken the battery’s internal components, increasing the risk of thermal runaway.

Potential hazards from Li-ion batteries

Potential hazards associated with Li-ion batteries include:

• Fire: When a Li-ion battery undergoes thermal runaway, it can generate enough heat to ignite the internal materials or surrounding objects. This can lead to a fire, posing a significant safety risk.

• Explosion: In extreme cases, the buildup of pressure from the gases produced during thermal runaway can rupture the battery casing, resulting in an explosion. While such incidents are rare, they can cause severe injuries or property damage.

• Toxic gas emission: Li-ion batteries may emit toxic gases, such as hydrogen fluoride and phosphorus pentafluoride, when they overheat or explode. Inhalation of these gases can be harmful to human health.

Mitigating the risks

There are a few practical steps one can take to help stay safe:

• Use genuine batteries: Always use genuine, manufacturer-recommended batteries and chargers for devices. Counterfeit or substandard products are more likely to pose risks.

• Avoid extreme temperatures: Keep devices and batteries away from extreme temperatures, both hot and cold. Avoid leaving them in direct sunlight or inside a hot vehicle.

• Inspect for damage: Regularly inspect devices and batteries for any signs of physical damage, such as swelling, punctures, or leaks. If any issues are noticed, the battery or device must be replaced.

• Charge safely: Charge devices on non-flammable surfaces, away from combustible materials. Do not leave them unattended while charging, especially overnight.

• Store properly: If Li-ion batteries are needed to be stored for an extended period, keep them in a cool, dry place with a partial charge (around 50%). Avoid storing them fully charged or fully depleted.

• Dispose of old batteries: Old Li-ion batteries, that are no longer in use, should be recycled properly.

• Invest in a Lith-Ex fire extinguisher: Lith-Ex fire extinguishers contain AVD, a naturally occurring agent specifically designed for Li-ion battery fires. AVD is made from the naturally occurring mineral, vermiculite, combined with water. It is a very effective agent that cools, encapsulates, prevents propagation, and extinguishes Li-ion battery fires.

For more information visit www.safequip.co.za




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power efficiency and robustness in electronics design
Power Electronics / Power Management
Mouser Electronics recently announced a new eBook in collaboration with Analog Devices highlighting essential strategies for optimising power systems.

Read more...
USB Type-C-powered controllers
Future Electronics Power Electronics / Power Management
Diodes Incorporated has released two USB Type-C PD 3.1 extended power range sink controllers that can be embedded into battery-powered devices.

Read more...
Multicell battery monitoring
Altron Arrow Power Electronics / Power Management
The LTC6811 from Analog Devices is a multicell battery stack monitor that measures up to 12 series connected battery cells with a total measurement error of less than 1,2 mV.

Read more...
Full telemetry in tiny DC-DC converters
RS South Africa Power Electronics / Power Management
The FS160* series of µPOL DC-DC converters from TDK all offer full telemetry, provide increased performance, and are remarkable for extraordinary power density in the smallest sizes.

Read more...
Power IC supplies 1650 W
EBV Electrolink Power Electronics / Power Management
Power Integrations has announced a two-fold increase in power output from the HiperLCS-2 chipset with the new device now being able to deliver up to 1650 W of continuous output power.

Read more...
High-voltage step-down DC-DC converter
Altron Arrow Power Electronics / Power Management
The MAX17793 is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over an input voltage range of 3 to 80 V.

Read more...
High-voltage contactors
RS South Africa Power Electronics / Power Management
TDK Corporation has announced two new additions to its high-voltage contactor portfolio for harsh environments: the HVC43MC with integrated mirror contact and the HVC45 with enhanced short-circuit current handling capability.

Read more...
Chokes rated at 36 A
RS South Africa Power Electronics / Power Management
TDK Corporation has launched the EPCOS SurfIND series, a new range of current-compensated ring core double chokes for high currents and surface mounting.

Read more...
RF arrestor provides robust protection
RFiber Solutions Power Electronics / Power Management
NexTek’s range of coaxial RF surge and lightning arrestors are designed and built to provide robust protection for any radio or coaxial RF transmission application.

Read more...
Wide-Bandgap Developer Forum 2025
Power Electronics / Power Management
To give designers the ultimate in design flexibility, the entire range of WBG power semiconductors will be provided including discretes, modules, and highly integrated solutions ranging from 40 V to 700 V for GaN and 400 V to 3,3 kV for SiC.

Read more...