Telecoms, Datacoms, Wireless, IoT


Advanced 5G non-terrestrial network mobility

30 August 2024 Telecoms, Datacoms, Wireless, IoT

By democratising wireless communications through space, internet providers aim to provide access to 50% of the Earth’s population currently disconnected from terrestrial networks (TN). The incorporation of

non-terrestrial networks (NTN) in the latest 3rd Generation Partnership Project (3GPP) Rel-17 poses significant technical and business challenges. This integration mandate pressures the communications industry to transform the envisioned goal into a tangible reality.

Besides offering connectivity to subscribers in the current unserved and underserved locales, and enabling applications such as the Internet of Things, this not-so-futuristic vision of wireless connectivity plans to leverage airborne stations and high-altitude platforms (HAPs) such as uncrewed aerial vehicles (UAVs), balloons, or dirigibles, shown in Figure 1. Developers intend to use this infrastructure to complement existing terrestrial networks and enable seamless connectivity worldwide.

5G NTNs leverage many features from 5G terrestrial networks because they face similar challenges. Because of this, there are heightened reliability expectations for 5G NTN services compared to earlier SATCOM networks. Handheld or vehicle-based user equipment (UE) demands high volumes of data for video and mapping services. Alternatively, sensor applications connect multiple user equipment, with lower data rates.

Delivering the required volumes of data means leveraging 5G signalling fundamentals for 5G NTN. The Federal Communications Commission (FCC) has already designated 5G spectrum exclusively for terrestrial networks. The deployment of tens of thousands of satellites for 5G NTNs introduces even more spectrum crowding.

Integrating terrestrial and non-terrestrial networks

The primary focus of an NTN is to offer coverage in underserved areas. An essential aspect that sets 5G NTN apart from previous technologies is its seamless integration with existing terrestrial network infrastructure. This integration unlocks the following new opportunities and use cases:

• Public safety for critical communications provides a backup in the absence of cellular coverage due to terrestrial network shutdowns, natural disasters, and emergencies.

• 3D coverage supports reliable communications when using aerial moving objects like balloons or UAVs, increasing the provision of multidimensional coverage and seamless transition.

• Massive IoT enables global coverage, alleviates cross-country border challenges, and optimises power consumption and network resources when moving between TN and NTN as needed.

To read the full white paper visit www.dataweek.co.za/*ad5gntn


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved