Analogue, Mixed Signal, LSI


How sensor fusion is driving vehicle autonomy forward

26 October 2022 Analogue, Mixed Signal, LSI

From reading road signs to keeping you inside lane markers, artificial-intelligence-assisted cameras are already making our vehicles smarter and safer. But what happens when the fog rolls in and your camera’s vision is as compromised as yours?

“A camera might be great for object recognition, but it’s not so good in bad weather or at night,” said Miro Adzan, general manager of advanced driver assistance systems (ADAS) at TI. “However, radar will continue to work in rain, snow or mist. Driver assistance systems need to incorporate a range of different sensors so the vehicle can take full advantage of the benefits of these different technologies.”

Using the strengths of different types of sensors is not just a matter of switching between them for different conditions or applications. Even in clear weather, a camera will be stronger for object details, but radar will measure an object’s distance more accurately.

As these systems extend to critical and time-sensitive applications such as emergency braking, automatic parking, front-collision warning and avoidance, and blind spot detection, design engineers will need to fuse these different information sources into a single picture to deliver reliable real-time decisions.

“For automatic parking, you need to combine data from cameras, radar and sometimes ultrasound to give the vehicle an accurate sense of what’s going on around you,” said Curt Moore, general manager for Jacinto processors at TI. “None of these sensors would be accurate enough on their own, but by combining them, you can get a much more accurate picture of the space around you. This allows you to park in much tighter spaces without the risk of causing damage.”

Advanced safety systems are no longer reserved only for high-end automobiles. Nearly 93% of vehicles produced in the US come with at least one ADAS feature, and automatic emergency braking is set to become standard across 99% of new cars in the United States by September.

The shift is a result of the decreasing cost and size of sensors, such as TI mmWave radar sensors which integrate an entire radar system into a chip the size of a coin.

“Ten years ago, radar was predominantly used in military applications because of size, cost and complexity,” Adzan said. “But today, radar is on the verge of becoming a standard component in the car.”

While the proliferation of affordable sensors opens up new applications, it also creates new challenges for ADAS engineers who need to design systems that bring together all the data streams and process them efficiently, while meeting tight affordability and power constraints.

In a single-sensor ADAS system, pre-processing data for object detection takes place close to the sensor in order to use that information immediately. But sensor fusion requires that raw, high-resolution data be instantly transmitted to a central unit for processing to form a single, accurate model of the environment that will help the vehicle avoid a collision.

“With all the data coming in from these sensor nodes, the challenge is making sure all of it is synchronised so the vehicle can understand what’s happening around you and make critical decisions,” said Heather Babcock, general manager for FPD-Link products at TI. “In order to transmit synchronised data in real time, it’s important to have high-bandwidth, uncompressed transmission capability because compressing data introduces latencies.”

The physical constraints of an automobile place tight limits on the size and weight of batteries and cooling infrastructure, so ADAS engineers need processors specifically designed to perform these tasks as efficiently as possible.

The Jacinto processors combine dedicated DSP and matrix multiplication cores that operate with the lowest available power, even at temperatures of up to 125°C.

“There are tremendous advantages in integrating the DSP and the processor into one system on a chip,” Moore said. “Otherwise, each will need its own memory and power supply, driving up the system cost. The other advantage is the reduction in latency gained by integrating these operations into one chip.”

In addition to power-efficient processors, TI’s automotive-qualified power management ICs with functional safety features for sensor fusion, front cameras and domain controllers improve overall power efficiency and functionality within the vehicle.

Beyond the individual components, TI’s entire ecosystem of ADAS products is created for seamless compatibility, allowing car manufacturers to select from a holistic portfolio that can be scaled to the demands and price points of their vehicles.

“We have all the pieces of the ADAS puzzle designed in a way that keeps the various challenges of the vehicle in mind,” Adzan said. “That makes the system design easier for our customers.”


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
ST MCUs extend ultra-low power innovation
Altron Arrow DSP, Micros & Memory
STMicroelectronics has introduced new STM32U3 microcontrollers with cutting-edge power-saving innovations that ease deployment of smart connected tech, especially in remote locations.

Read more...
Multicell battery monitoring
Altron Arrow Power Electronics / Power Management
The LTC6811 from Analog Devices is a multicell battery stack monitor that measures up to 12 series connected battery cells with a total measurement error of less than 1,2 mV.

Read more...
A new era in modular I/O solutions
Rugged Interconnect Technologies Analogue, Mixed Signal, LSI
Aerospace and defence system designers are demanding scalable and high-performance I/O solutions and while traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements.

Read more...
High voltage instrument op-amp
iCorp Technologies Analogue, Mixed Signal, LSI
The SGM621B is a high accuracy, high voltage instrumentation amplifier, which is designed to set any gain from 1 to 10 000 with one external resistor.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
High-voltage step-down DC-DC converter
Altron Arrow Power Electronics / Power Management
The MAX17793 is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over an input voltage range of 3 to 80 V.

Read more...
High-speed SAR ADC simplifies design
Altron Arrow Analogue, Mixed Signal, LSI
The ADI AD4080 simplifies data converter integration by integrating a low drift reference buffer, low dropout regulators and a 16K result data FIFO buffer.

Read more...
Arduino platform with Analog Devices technology for flexible industrial control
Altron Arrow Editor's Choice DSP, Micros & Memory
Software-configurable systems enable industrial OEMs to deliver unprecedented flexibility to the factory floor, while simplifying product complexity.

Read more...