Telecoms, Datacoms, Wireless, IoT


Can you really trust your GPS position?

28 September 2022 Telecoms, Datacoms, Wireless, IoT

A French vineyard in the Loire valley is a beautiful sight, but the farm has trouble recruiting workers to weed their organically grown grapes. The young generation has moved to the cities leaving urban communities short on workforce. Solution: a fully autonomous tractor, developed by a French-based company Sitia, working tirelessly to weed the narrow rows between the grape vines.

After a full month of weeding and hundreds of kilometres covered, Sitia approached the farmer to review the work done, and reimburse 2 grape vines, which were damaged during the month of operation. They were surprised to hear the farmer exclaim, “When I use my manual tractor to get the same job done, I damaged at least two vines a day! How did your robot manage to be so careful?”.

A high level of accuracy and integrity ensures high quality of autonomous operation. But what exactly is integrity of positioning and how does it affect the performance and reliability of robots and other autonomous machines? Integrity is the truthfulness of positioning and positioning accuracy information, even if it means showing that the current position information is not as accurate as desired in a certain challenging environment. A part of delivering high-integrity positioning is a statistical analysis called RAIM or RAIM+, where the latter takes this analysis to the next level as part of a larger positioning protection package.

Why is integrity critical for automation?

Let us take a closer look at GNSS receiver integrity in the sense of truthful reporting of possible positioning inaccuracies, and how overly optimistic reporting can result in hazardous autonomous operation. Reporting of receiver accuracy is done through positioning uncertainty, which is the maximum possible error on the calculated position. It gives a sense of risk of a positioning error especially necessary in challenging GNSS environments where the receiver “sees” only a limited number of GNSS satellites or where GNSS signals are degraded. Such error reporting is important for all autonomous machines, but especially for assured PNT applications and mission critical operations. Keep in mind that a consistent position may look accurate but could still be incorrect. The positioning uncertainty gives an indication to which extent you can rely on the positioning accuracy at any given moment.

RAIM vs RAIM+

The underlying mechanism behind truthful positioning uncertainty reporting is RAIM (Receiver Autonomous Integrity Monitoring), which ensures truthful positioning calculation based on statistical analysis and exclusion of any outlier satellites or signals. Septentrio receivers are designed for high integrity and take RAIM to the next level with RAIM+, guaranteeing truthfulness of positioning with a high degree of confidence. In Septentrio receivers RAIM+ is actually a component of a comprehensive receiver protection suite called GNSS+ comprising positioning protection on various levels including AIM+ anti-jamming and anti-spoofing, IONO+ resilience to ionospheric scintillations and APME+ multipath mitigation.

The Septentrio RAIM+ statistical model has been fine-tuned with over 50 terabytes of field data collected over 20 years. It removes satellites and signals which may give errors due to multipath reflection, solar ionospheric activity, jamming and spoofing, while working together with the GNSS+ components mentioned above. Because of this multi-component protection architecture, it achieves a very high level of positioning accuracy and reliability which goes well beyond the standard RAIM. The RAIM+ statistical model is adaptive, highly detailed and complete, taking advantage of all available GNSS constellations and signals. The full RAIM+ functionality is even available in Septentrio’s GNSS/INS receiver line. User controlled parameters allow it to be tuned to specific requirements.

Figure 1 shows RAIM+ in action during a jamming and spoofing attack on a Septentrio GNSS receiver. While AIM+ removes the effects of GNSS jamming, both AIM+ and RAIM+ work together to block the spoofing attack.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...
RFID in aviation: the ultimate solution to baggage mishandling
Osiris Technical Systems Editor's Choice Telecoms, Datacoms, Wireless, IoT
Creating a solution that enables real-time tracking of airline baggage on a global scale seems like an impossible task when considering the number of airlines, airports, and passengers that flow through and between them.

Read more...