Telecoms, Datacoms, Wireless, IoT


VSWR, return loss and transmission loss vs transmission power

28 September 2022 Telecoms, Datacoms, Wireless, IoT

In an ideal RF system, all the energy from the RF source is transferred to the load. An example of this would be a transmitter delivering a signal to an antenna with the interconnect between the two signal chain components operating at 100% efficiency. However, this does not happen, and factors like impedance mismatch and losses need to be considered. There are a few well established methods of discussing these imperfections and ways to include this in a system design. This article strives to be a brief primer on this topic.

RF energy in a signal chain

An RF signal chain is merely a system of connected RF components and devices in which a signal flows from a source to a load. This could be a transmitter signal chain, receiver signal chain, or really any RF system.

Leaning on the Law of Conservation of Energy, all the signal energy injected into a signal chain needs to go somewhere. Generally, every node of a signal chain exhibits loss and mismatch. As the signal energy from a source passes through signal chain components, devices, and interconnect, some of the signal energy is transferred through, some is reflected back, and some is absorbed within the signal chain elements.

Insertion loss/transmission loss

The insertion loss of a signal chain element is simply the amount of signal energy that is absorbed or otherwise extracted from the signal chain by that element. Hence, the ratio of the incident (forward/incoming) power to the transmitted (through) power is the insertion loss. This ratio is usually given as a logarithmic quantity in terms of power (in decibels), but can also be measured in terms of voltage, which is less common.

Return loss

The return loss from a signal chain element is the amount of signal energy reflected from the incident node of that element compared to the total incident energy. The reflection loss differs from insertion loss because the return loss signal energy isn’t being lost within the signal chain element, but rather, is reflected back into the signal chain opposite the incident node. Like insertion loss, return loss is also generally described in decibels of power.

VSWR

Voltage standing wave ratio (VSWR), often referred to as standing wave ratio (SWR), is the ratio between the transmitted and reflected voltage standing waves at a signal chain element incident node. VSWR is most often described as a function of the reflection coefficient at the input of a signal chain element. Due to this, the VSWR is also a measure of how efficiently RF energy is transferred from a source to a load. An ideal system with perfect match (no reflection) would result in a VSWR of 1:1. However, real systems always have some degree of mismatch, making the VSWR larger than 1:1, and the higher the ratio the worse the match.

VSWR can be expressed in terms of the forward and reflected wave voltages and can therefore be calculated as:

With these voltages indicated in the following graph.

Therefore, using the reflection coefficient, VSWR is:

Where Γ, the reflection coefficient, is defined as the ratio of the reflected voltage vector to the forward voltage.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved