Telecoms, Datacoms, Wireless, IoT


Using radio signals to image hidden objects

28 September 2022 Telecoms, Datacoms, Wireless, IoT

Researchers at the National Institute of Standards and Technology (NIST), together with Wavsens LLC, have developed a method for using radio signals to create real-time images and videos of hidden and moving objects. One application could be to help firefighters find escape routes for victims inside buildings filled with fire and smoke. The technique could also help track hypersonic objects such as missiles and space debris.

The new method could provide critical information to help reduce deaths and injuries. “Our system allows real-time imaging around corners and through walls, and tracking of fast-moving objects such as millimetre-sized space debris flying at 10 kilometres per second, all from standoff distances,” said physicist Fabio da Silva, who led the development of the system while working at NIST. “Because we use radio signals, they go through almost everything, like concrete, drywall, wood and glass,” da Silva added. “It’s pretty cool, because not only can we look behind walls, but it takes only a few microseconds of data to make an image frame. The sampling happens at the speed of light; as fast as physically possible.”

The NIST imaging method is a variation on radar, which sends an electromagnetic pulse, waits for the reflections, and measures the round-trip time to determine distance to a target. Multisite radar usually has one transmitter and several receivers that receive echoes and triangulate them to locate an object.

“We exploited the multisite radar concept but in our case use lots of transmitters and one receiver,” da Silva said. “That way, we are able to locate and image anything that reflects anywhere in space.”

The NIST team demonstrated the technique in an anechoic (non-echoing) chamber, making images of a 3D scene involving a person moving behind drywall. The transmitter power was equivalent to 12 cell phones sending signals simultaneously to create images of the target. Da Silva said the current system has a potential range of up to several kilometres. With some improvements, the range could be much further, limited only by transmitter power and receiver sensitivity, he said.

The transmitting antennas operated at frequencies from 200 MHz to 10 GHz, roughly the upper half of the radio spectrum, which includes microwaves. The receiver consisted of two antennas connected to a signal digitiser. The digitised data were transferred to a laptop computer and uploaded to the graphics processing unit to reconstruct the images.

The NIST team used the method to reconstruct a scene with 1,5 billion samples per second, a corresponding image frame rate of 366 fps. With 12 antennas, the NIST system generated 4096-pixel images, with a resolution of about 10 centimetres across a 10-metre scene. This image resolution can be useful when sensitivity or privacy is a concern. However, the resolution could be improved by upgrading the system using existing technology.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

STM releases innovative GNSS receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics recently introduced the Teseo VI family of global navigation satellite system receivers aimed at high-volume precise positioning use cases.

Read more...
Bluetooth module brilliance
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Following the company’s popular PAN1780, the PAN1783 Bluetooth 5.3 Low Energy (LE) module from Panasonic is based on the Nordic nRF5340 single chip controller.

Read more...
High-power radar band amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The MAPC-A4032 is a Gallium Nitride (GaN) amplifier designed specifically with high efficiency and high power for the 2,75 – 3,75 GHz S-Band radar band.

Read more...
NXP’s latest wireless chip solution
Avnet Silica Telecoms, Datacoms, Wireless, IoT
NXP’s IW610 wireless chip solution features a 1x1 dual-band Wi-Fi 6 radio subsystem, offering improved network efficiency, reduced latency and extended range.

Read more...
High-accuracy positioning
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel has recently announced its LG580P, a multi-constellation, multi-band GNSS module designed for high-precision positioning that supports multi-band signals across L1, L2, L5, and L6.

Read more...
LTE Cat 1 modules offer next-gen connectivity
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The innovative LTE modules A7683E, A7663E, and A7673X have revolutionised IoT connectivity and saved costs for developers and circuit manufacturers.

Read more...
Compact and powerful Bluetooth module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
u-blox has introduced its ANNA-B5, a compact, powerful and secure Bluetooth LE module optimised for IoT applications.

Read more...
2500 W GaN on SiC amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Macom’s recently released CGHV1420KF is a 2500 W package, partially matched amplifier utilising a high performance, GaN-on-SiC production process.

Read more...
Boost your LTE/5G signal
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Reliable connectivity is essential in today’s world - whether you’re working from home, running a small business, or living in a rural area where mobile signals are weak.

Read more...
Direct RF-sampling at microwave frequencies
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Jariet Technologies’ vision for its RF-sampling transceivers at microwave frequencies is to move the sampling to the antenna frequency.

Read more...