Telecoms, Datacoms, Wireless, IoT


Bidirectional amplifier basics

27 July 2022 Telecoms, Datacoms, Wireless, IoT

A bidirectional amplifier (BDA) is an active RF device that is widely used in a variety of telecommunication, radar, and other RF sensing applications. Although conceptually a bidirectional amplifier performs a relatively simple operation, the internal electronics can be somewhat complex. Moreover, many applications favour certain names and types of bidirectional amplifiers, which makes identifying a bidirectional amplifier in the wild somewhat difficult.

The essential functions of a BDA are to amplify the signals transmitted and received by the device. This means that signals generated by a telecommunication device and intended to be transmitted will benefit from a higher output signal and the low power signals received by the antenna of the BDA will also experience some gain. The goal of a BDA is to increase the transmit and receive signals without adding significant noise or distortion.

To do this, a BDA is typically placed inline as a ,booster, or ,repeater, in a communication system. This can be done by installing a BDA on a tower together with the transmit/receive antenna or inline with a coaxial or waveguide transmission line to add gain to signals travelling between two distant points.

To apply gain to both the transmit and receive signals a BDA requires both a power amplifier (PA) in the transmitter side signal chain and a low-noise amplifier (LNA) in the receive side signal chain. Moreover, a BDA consists of a means of separating the transit and receive signal chains from each other, so that the high-power transmit signals aren’t fed into the LNA (crosstalk) and the receive signal chain is optimised to reduce loss and minimise added noise to the received signals.

A bidirectional amplifier works by separating the transmit and receive signals into separate signal chains. Once separated, the transmit and receive signals are then increased in signal strength using either a PA for the transmit signal or a LNA for the receive signal. A BDA is installed in such a way that the receive signals to the radio or transmission line are increased in strength and isolated from the transmit signals and vice versa.

There are a variety of methods to separate the transmit and receive signals, with RF switches, duplexers, or circulators. A BDA that uses duplexers or circulators and allows for simultaneous transmission and reception functions is known as a full-duplex bidirectional amplifier. The difference between a duplexer-based and a circulator-based BDA is that a duplexer is a type of bandpass filter that separates signals from the input to the two outputs based on frequency, where as circulator separates the signals at the input based on direction. A BDA that uses RF switches to separate the transmit and receive signal chains can only allow for transmission or reception at a given time and is known as a half-duplex BDA. Typically, a BDA has either coaxial connector interconnect or waveguide interconnect depending on the type of system or application the device is being used in.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved