Telecoms, Datacoms, Wireless, IoT


Bidirectional amplifier basics

27 July 2022 Telecoms, Datacoms, Wireless, IoT

A bidirectional amplifier (BDA) is an active RF device that is widely used in a variety of telecommunication, radar, and other RF sensing applications. Although conceptually a bidirectional amplifier performs a relatively simple operation, the internal electronics can be somewhat complex. Moreover, many applications favour certain names and types of bidirectional amplifiers, which makes identifying a bidirectional amplifier in the wild somewhat difficult.

The essential functions of a BDA are to amplify the signals transmitted and received by the device. This means that signals generated by a telecommunication device and intended to be transmitted will benefit from a higher output signal and the low power signals received by the antenna of the BDA will also experience some gain. The goal of a BDA is to increase the transmit and receive signals without adding significant noise or distortion.

To do this, a BDA is typically placed inline as a ,booster, or ,repeater, in a communication system. This can be done by installing a BDA on a tower together with the transmit/receive antenna or inline with a coaxial or waveguide transmission line to add gain to signals travelling between two distant points.

To apply gain to both the transmit and receive signals a BDA requires both a power amplifier (PA) in the transmitter side signal chain and a low-noise amplifier (LNA) in the receive side signal chain. Moreover, a BDA consists of a means of separating the transit and receive signal chains from each other, so that the high-power transmit signals aren’t fed into the LNA (crosstalk) and the receive signal chain is optimised to reduce loss and minimise added noise to the received signals.

A bidirectional amplifier works by separating the transmit and receive signals into separate signal chains. Once separated, the transmit and receive signals are then increased in signal strength using either a PA for the transmit signal or a LNA for the receive signal. A BDA is installed in such a way that the receive signals to the radio or transmission line are increased in strength and isolated from the transmit signals and vice versa.

There are a variety of methods to separate the transmit and receive signals, with RF switches, duplexers, or circulators. A BDA that uses duplexers or circulators and allows for simultaneous transmission and reception functions is known as a full-duplex bidirectional amplifier. The difference between a duplexer-based and a circulator-based BDA is that a duplexer is a type of bandpass filter that separates signals from the input to the two outputs based on frequency, where as circulator separates the signals at the input based on direction. A BDA that uses RF switches to separate the transmit and receive signal chains can only allow for transmission or reception at a given time and is known as a half-duplex BDA. Typically, a BDA has either coaxial connector interconnect or waveguide interconnect depending on the type of system or application the device is being used in.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved