Power Electronics / Power Management


Voltage conversion at low energy levels

24 November 2021 Power Electronics / Power Management

Conversion efficiency is a key characteristic of power converters. Common switching regulators for step-down conversion (buck converters) typically have conversion efficiencies of between 85% and 95%. The efficiency to be reached strongly depends on the available supply voltage and the respective output voltage to be generated, as well as the required load current. However, numerous applications require a special type of conversion efficiency for which there are special switching regulator solutions. These deployments require optimised converters for low output power.

Battery-operated systems that are always on often need to consume a very low amount of current in standby mode. Examples include sensors that measure vibrations in bridges or that detect forest fires. In these cases, it is important to have a low battery discharge over long periods of time. This property is particularly important in systems that depend on energy harvesters as energy sources.

Such sensors are frequently also connected via radio to other devices. Individual node points that are usually supplied through energy harvesting or with batteries are linked to transmit signals across several node points and over long distances. These individual radio nodes must always listen for signals in a type of ‘sleep mode’ and then, when a corresponding signal occurs, switch to an operating mode with a higher energy consumption and propagate the corresponding signals.

A new class of DC-to-DC converters has been introduced with the LTC3336. While the output voltage is generated and there is a low load at the output, it only consumes about 65 nA of current in standby mode. Figure 2 shows a compact example circuit that generates an output voltage of 2,5 V from a VIN of approximately 7 V.

As is usual with such voltage converters, the output voltage is not set via a resistor voltage divider. This would waste too much energy. To allow different output voltages to be set, the pins OUT0 to OUT3 are used. Depending on the wiring of these pins, the output voltage can be set in steps between 1,2 V and 5 V.

In many energy harvesting applications, the energy source must be protected from excessive current loads. Some batteries or harvesters can only deliver a limited amount of current. If this specific current limit is exceeded, the voltage sags or, in some cases, damage can even occur. Therefore, it makes sense to limit the current draw of the power converter. The LTC3336 can limit the input current in adjustable steps between 10 mA and 300 mA. This input current limitation is similar to the output voltage in that it can be set through appropriate wiring of the IPK0 and IPK1 pins.

The efficiency plot in Figure 3 shows the efficiencies that can be reached with very low output currents such as 1 µA. A lot of energy is saved, especially in applications with long operating times and low loads.

Conclusion

The LTC3336 is the perfect choice for battery-powered systems since it draws only 65&nbs;nA of current when in standby mode. This means that circuits with fixed battery sizes can be operated for a much longer time, or energy harvesters can be designed to be smaller and therefore lower-cost.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

ABB’s Mission to Zero drives South Africa’s energy transition
ABB Electrification Products Power Electronics / Power Management
ABB Electrification is charting a bold path towards a net-zero future with its Mission to Zero programme, a blueprint that combines energy efficiency, electrification, and digital innovation to accelerate the transition to clean energy.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Driving power, defining performance
Future Electronics Power Electronics / Power Management
Vishay’s portfolio of inductors, current sense resistors, and MOSFETs provides a comprehensive solution for intelligent power management.

Read more...
Battery simulator module simplifies BMS testing
Test Dynamics Power Electronics / Power Management
The PXI/PXIe solution from Pickering Interfaces offers a scalable, modular design for faster development cycles, lower total cost of ownership, and improved safety.

Read more...
DC PSU: The cornerstone for efficient solar-storage systems
Vepac Electronics Power Electronics / Power Management
PV energy storage systems are evolving and DC power supplies, with their technical characteristics that are naturally compatible with new energy, have become a key carrier for improving system energy efficiency.

Read more...
Why local manufacturing, maintenance and support are key to the success of South Africa’s energy future
Power Electronics / Power Management
Although new renewable generation capacity is being developed, the current transmission infrastructure may not fully support the connection of these sources to the national grid or adequately deliver power to areas of high demand.

Read more...
Converter power modules for 48 V networks
Altron Arrow Power Electronics / Power Management
The economic and quality-of-life benefits of electrification is driving the adoption of HV to 48 V DC-DC conversion across many markets with 48 V power modules becoming more common.

Read more...
How a vision AI platform and the STM32N6 can turn around an 80% failure rate for AI projects
Altron Arrow AI & ML
he vision AI platform, PerCV.ai, could be the secret weapon that enables a company to deploy an AI application when so many others fail.

Read more...
Memory for asset tracking
Altron Arrow DSP, Micros & Memory
The Page EEPROM, ST’s latest memory, has been designed for efficient datalogging and fast firmware upload/download in battery-operated devices.

Read more...
Microchip and AVIVA Links collaboration
Altron Arrow News
Microchip and AVIVA Links have achieved groundbreaking ASA-ML interoperability, accelerating the shift to open standards for automotive connectivity.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved