For designers who require reliable centimetre-level positioning accuracy, e.g. for the industrial navigation and robotics markets, a new suite of products and feature additions have been rolled out by u-blox.
The upgraded ZED-F9P high-precision global navigation satellite system (GNSS) receiver module and the corresponding NEO-D9S and NEO-D9C GNSS correction data receivers offer customers extensive flexibility in assembling scalable solutions for their specific use case, including robotic lawnmowers, unmanned autonomous vehicles (UAV) and semi-automated or fully automated machinery.
The software-upgraded ZED-F9P-04B receiver is the first to support a secure SPARTN GNSS correction data format. It further connects seamlessly to two new GNSS correction service receiver modules that stream correction data from communication satellites: the NEO-D9S will initially cover the European and US markets before rolling out to other areas of the globe, while the NEO-D9C will cover Japan.
NEO-D9S receives correction data using the SSR SPARTN data format over the satellite L-band channel. It uses cryptography to securely deliver PPP-RTK GNSS correction data, such as that offered by u-blox’s PointPerfect service.
NEO-D9C leverages the subscription-free Centimetre-Level Augmentation Service (CLAS) broadcast over mainland Japan provided by the Japanese QZSS (Quasi-Zenith Satellite System) constellation on the L6-band channel.
While u-blox GNSS receivers are designed to work with most correction services on the market, pairing the ZED-F9P with the NEO-D9C or NEO-D9S correction data receivers enables customers to save data transmission cost and operational efforts.
Additionally, ZED-F9P-04B offers a new feature called protection level, which increases the trust applications can place in its position output. By continuously outputting the upper bound of the maximum likely positioning error, referred to as the protection level, the receiver lets autonomous applications, such as UAVs, perform efficient real-time path planning to increase the quality of their operations.
In the case of robotic lawnmowers, the increased accuracy and reliability of the position will, for example, allow for doing away with boundary wires, which today are buried under the turf to delimit the mowing area. Furthermore, it will allow lawnmowers to systematically cover a plot based on a digital map, as opposed to the random mowing approach that is commonly used today.
Tel: | +27 21 555 8400 |
Email: | [email protected] |
www: | www.rfdesign.co.za |
Articles: | More information and articles about RF Design |
© Technews Publishing (Pty) Ltd | All Rights Reserved