Power Electronics / Power Management


How a power supply handles non-linear loads

26 February 2021 Power Electronics / Power Management

Non-linear loads, in the context of a power supply, are those that do not behave like an ideal resistor, such as point of load (POL) DC-DC converters and discharged capacitors that are switched onto the output, causing high currents to flow until the capacitor is charged.

Current-limit protection, or Over-Current Protection (OCP), is an essential design feature for a power supply; the techniques used include constant-current, foldback and hiccup. Of these three types, the favoured technique is hiccup current limit even though, in some cases, the circuitry to achieve this can be quite complex in nature. Upon detection of an over-current event, the whole power supply shuts down for an interval before it tries to power itself up again (auto restart). The cycle repeats, or hiccups, until the over-current fault disappears.

Figure 1. Power supply start-up into a POL converter.

Figure 2. A discharged capacitor being switched onto the established output of an AC-DC power supply with hiccup over-current protection.

Figure 3. The CFE400M can run at 300 W and have the 3000 µF capacitance switched in and still recover without going into hiccup.

The benefit to the equipment manufacturer using a power supply with hiccup current limit is that it can accommodate peak power conditions and the cable does not need to be rated at this higher peak current. Power supplies using simple analog control circuitry would typically have fixed timing for the hiccup, but digitally controlled power supplies can employ load dependent timing. Typical values are 10 s on-time for an overload condition, around 60 ms for heavy overloads and approximately 5 ms for a short-circuit condition. Off-times would typically be 1 to 2 seconds.

Figure 1 shows the start-up of an AC-DC power supply with hiccup current limit starting into a POL converter load; the yellow curve shows the output voltage and the red curve shows the current. During start-up, there is a large inrush current from the capacitors of about 150 A peak – although this inrush current is very high, it is occurring during the soft-start phase of the AC-DC power supply and is of short duration, so the power supply remains unaffected. The soft start-up characteristic of the power supply is optimised to handle this kind of inrush current and, provided that the peak occurs before the voltage comes into regulation, it’s not a problem. It can be a problem, however, when this occurs once the regulated voltage is established and the reason for this is the hiccup current limit.

In the waveforms shown in Figure 2, the blue trace shows the current supplied by the AC-DC power supply as a discharged, low-impedance capacitor is switched onto the established output. As you can see, the power supply has turned on three times – this happens because the relay bounces. At just under 60 A, there’s about 700 W being drawn from the power supply, which could cause a standard power supply to hiccup, thus preventing correct start-up of the load. In this case, however, the output does recover as can be seen by the yellow trace.

The design team at TDK-Lambda improved the hiccup current limit algorithms when it introduced the CFE series. The waveform in Figure 3 shows the CFE400M running at 24 V; when a 3000 µF capacitor is switched in, it discharges the output to almost zero (yellow trace) as it discharges the much smaller output capacitor on the product.

As you can see, the CFE is optimised to deal with this large switched capacitive load, supplying almost 50 A of output current for about 1,5 ms (in short-circuit mode) and then dropping down to a lower level of about 30 A (over-current protection mode) for approximately 50 ms, which is typically long enough for the voltage to recover.

The CFE400M can run at 300 W and have the 3000 µF capacitance switched in and still recover without going into hiccup; thus offering the benefits of hiccup current limiting, such as a 150% peak-power capability with reduced cable size requirements, whilst still being able to handle highly non-linear loads normally associated with power supplies having constant-current type OCP.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Zero drift current shunt monitors
Altron Arrow Power Electronics / Power Management
The NCS21671 and NCV21671 from onsemi are a series of voltage output current sense amplifiers offered in gains of 25, 50, 100, and 200 V/V.

Read more...
Schneider Electric partners with Drakenstein Municipality
Schneider Electric South Africa Power Electronics / Power Management
Drakenstein Municipality, situated in Paarl in the Western Cape, is one of the first distribution utilities globally to implement Schneider Electric’s green, SF6-free RM AirSeT switchgear with pure air technology and native digital connectivity.

Read more...
E-Mobility: navigate safety, interoperability and conformance
Concilium Technologies Power Electronics / Power Management
Although the concept of electric vehicles is not a new one, the market remains in its infancy, and is not well-regulated or fully operational. This presents a number of challenges for manufacturers throughout the EV and EVSE ecosystem.

Read more...
Webinar: Decarbonise with industrial drives
Power Electronics / Power Management
Infineon's TRENCHSTOP IGBT7 and CoolSiC technologies increase the efficiency of your industrial drive design, ultimately resulting in cost savings for you, and a more sustainable future for all.

Read more...
Analysis of switch-mode power supply: inductor violations
Altron Arrow Editor's Choice Power Electronics / Power Management
Common switch-mode power supply (SMPS) design errors are discussed, and their appropriate rectification is specified, with details on complications that arise with the power stage design of DC-DC switching regulators.

Read more...
Compact PCB-mount SMPS
RS South Africa Power Electronics / Power Management
Traco Power’s 5W PCB-mount switch mode power supply (SMPS) offers high efficiency, and is well suited for a variety of applications in the automation, electronics, electrical and mechanical industries.

Read more...
AC-DC brick PSU
Conical Technologies Power Electronics / Power Management
These PSUs have a typical efficiency of up to 92%, and a power factor value of up to 0,99. They are available in 12, 24, 28, 48 and 54 V output versions.

Read more...
5 kW switching PSU range
Conical Technologies Power Electronics / Power Management
Mornsun has released a new switching power supply range, the LMF5000-25Bxx, which has a 5000 W capacity, and features universal AC input configurations.

Read more...
Reliable charging range
Current Automation Power Electronics / Power Management
Whether you’re powering essential electronics, keeping emergency equipment operational, or maintaining the performance of critical machinery, the need for dependable charging solutions cannot be overstated.

Read more...
Microchip expands its mSiC solutions
EBV Electrolink Power Electronics / Power Management
The highly integrated 3,3 kV XIFM plug-and-play digital gate driver is designed to work out-of-the-box with high-voltage SiC-based power modules to simplify and speed system integration.

Read more...