Telecoms, Datacoms, Wireless, IoT


The difference between RF limiters and attenuators

25 November 2020 Telecoms, Datacoms, Wireless, IoT

Both RF limiters and attenuators reduce the power of an RF signal. However, they do so in different ways that are key to understanding their use. These components are often used to protect sensitive RF components and devices. There is also a wide range of RF limiters and attenuators that operate in various ways that may be advantageous for some systems and not others.

RF limiters

RF limiters are devices that reduce an incoming signal if its power level exceeds a threshold of the limiter. It is common to use RF limiters to protect sensitive receivers and signal conditioning circuitry from high incoming signals that would otherwise desensitise the receiver or damage the signal conditioning components. For instance, a low-noise amplifier (LNA) is often a sensitive device where incident power beyond a certain threshold may result in derating or damage to the LNA.

RF limiters may be used anywhere in a signal chain that may experience unintended or unavoidable high signal energy that could damage components or result in undesirable operation. This is the case in portions of the signal chain, such as the input ports of a mixer or gain block amplifier.

PIN diodes are commonly used to implement RF limiters as incident-power controlled, variable resistors. In this implementation the resistance, or attenuation value of the RF limiter, is a function of the incident signal power. Hence, a greater incident signal energy will result in higher RF limiter attenuation and a proportionally reduced output signal. RF limiters are typically connectorised with coaxial or waveguide interfaces, though there are surface mount RF limiters.

RF attenuators

RF attenuators can be passive or active devices with variable attenuators depending on the design. The basic passive attenuator acts as a resistive element that reduces the incident signal by a certain amount of signal energy. Hence, attenuators are often designated by the decibel (dB) drop the attenuator provides.

Basic passive attenuators are both absorptive and dissipative, in that they absorb incoming signal energy and dissipate it as heat, as opposed to reflecting the signal energy or storing the energy. In this way attenuators are often used to reduce reflected signals, such as those from reflective filter topologies, and reduce standing waves that would otherwise develop between two reflective ports. These types of attenuators are also typically broadband, depending on whether the attenuator is connectorised with coaxial, waveguide, or planar transmission line ports.

There are also passive variable attenuators that enable various attenuation levels depending on a selected setting. Additionally, there are active variable attenuators that exhibit attenuation as a function of a control input. Variable attenuators can be used to control the signal level to keep the signal within a desirable range, or can even be used for modulation in amplitude modulated (AM) or quadrature amplitude modulated (QAM) communications.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...