Power Electronics / Power Management


Maintaining backup battery systems for maximum usage and reliability

30 September 2020 Power Electronics / Power Management

Standby battery backup systems play a critical role in keeping essential operations functional in the event of a utility outage. Facilities like data centres, hospitals, airports, utilities, oil and gas facilities, and railways can’t operate without 100 percent backup power reliability. Even standard commercial and manufacturing facilities have backup power systems for their emergency systems, alarms and controls, emergency lighting, steam and fire control systems.

Most backup power systems use an uninterruptible power supply (UPS) and a string of batteries. The UPS backs up the digital control system (DCS) to keep control of plant operations until systems can be safely shut down or until the auxiliary generator kicks on.

Although most batteries used in modern day UPS systems are ‘maintenance free’, they are still susceptible to deterioration from corrosion, internal shorts, sulphation, dry-out, and seal failure. This article outlines best practices for keeping these battery banks at optimum performance, so that if an outage does occur, the backup is ready.

Top two indicators of battery health

1. Internal battery resistance

Internal resistance is a lifespan test, not a capacity test. Battery resistance stays relatively flat up until the end of life draws near. At that point, internal resistance increases and battery capacity decreases. Measuring and tracking this value helps identify when a battery needs replacing.

Only use a specialised battery tester designed to measure battery resistance while the battery is in service. Read the voltage drop on the load current (conductance) or the AC impedance. Both results will be in ohmic values. A single ohmic measurement is of little value without context. Best practice requires measuring ohmic values over months and years, each time comparing them to previous values on record to create a base line.

2. Discharge testing

Discharge testing is the ultimate way to discover the true available capacity of a battery but can be complicated to perform. In discharge testing, a battery is connected to a load and discharged over a specified period. During this test period, current is regulated, and a constant known current is drawn while voltage is measured periodically.

Details of the discharge current, the specified time period for discharge testing, and the capacity of the battery in ampere hours (Ah) can be calculated and compared to the manufacturer’s specification. For example, a 12 V, 100 Ah battery may require a discharge current of 12 A for an eight-hour period. A 12 V battery would be discharged when the terminal voltage is 10,5 V.

Batteries cannot support critical loads during and immediately after a discharge test. Transfer critical loads to a different battery bank until well after the test is complete and then reconnect a temporary, comparably sized load to the batteries under test. In addition, before conducting the test, prepare a cooling system to compensate for a rise in ambient temperature. When large batteries discharge, they release a significant amount of energy expended as heat.

Healthy batteries should maintain a capacity above 90% of the manufacturer’s rating; most manufacturers recommend replacing the battery if it falls below 80%. When conducting battery tests, look for these indicators of failure:

• Drop in capacity of more than 10% compared to the baseline or previous measurement.

• 20% or more increase in impedance compared to baseline or previous measurement.

• Sustained high temperatures compared to baseline and manufacturer’s specifications.

• Degradation in plate condition.

How to conduct standard battery tests

1. Float voltage

• Isolate the battery or batteries from the charging system and the load.

• Measure the individual cell voltage or string using a digital multimeter or battery analyser such as on a monthly basis.

2. Charger output

• Measure the charger output voltage at the charger output terminals using a digital multimeter or battery analyser such as the Fluke 500 Series battery analyser on a monthly basis.

• Observe the output current shown on the charger current meter or use an appropriate DC current clamp meter. Measure monthly.

3. DC float current

• Refer to the manufacturer’s specifications for approximate values for expected float currents.

• Use an appropriate DC current clamp meter to measure expected float current on a monthly basis.

4. Internal ohmic values

• Use a battery analyser such as the Fluke 500 Series to measure the individual battery ohmic values on a quarterly basis.

• Establish reference values and maintain in the battery database.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wine farm turns to solar installation for power
Current Automation Power Electronics / Power Management
Slanghoek Wine farm opted into a power purchase agreement to lower overall electricity costs and enter a true sustainable future, with a price-competitive edge on lower running costs.

Read more...
Industrial PSU family
Brabek Power Electronics / Power Management
The RACPRO1 family of PSUs supports a universal DC input voltage range from 430 to 850 V DC, allowing the parts to support renewable energy and microgrid applications.

Read more...
Integrated POL voltage regulators
EBV Electrolink Power Electronics / Power Management
Infineon’s TDA38807 and TDA38806 are their highest density high-efficiency integrated point-of-load (IPOL) solutions for smart enterprise systems.

Read more...
Hi-Rel quarter-brick converters
Accutronics Power Electronics / Power Management
Gaia Converter’s quarter-brick series DC-DC power modules provides output power levels ranging from 75 to 250 W in fixed output voltages.

Read more...
1700 V GaN Switcher IC
Future Electronics Power Electronics / Power Management
Power Integrations has introduced a new member of its InnoMux-2 family of single-stage regulated multi-output offline power supply ICs, the industry’s first 1700 V gallium nitride switch.

Read more...
How ADI battery management solutions empower safer, smarter robots
Altron Arrow Editor's Choice Power Electronics / Power Management
Choosing an appropriate battery pack and its accompanying battery management system is a critical decision in designing an autonomous mobile robot.

Read more...
Industrial power supply range
RFiber Solutions Power Electronics / Power Management
SynQor’s ruggedised AC-DC and DC-DC converters and filters are designed for a wide range of industrial applications, including those required to withstand harsh environments.

Read more...
PSUs for industrial applications
Power Electronics / Power Management
RECOM’s REDIIN120/240/480 series of AC-DC converters perfectly corresponds with customer needs by exhibiting high efficiency and low energy consumption at no load.

Read more...
Highest density automotive-grade power modules
Altron Arrow Power Electronics / Power Management
Vicor has released three automotive-grade power modules for 48 V EV systems, which deliver industry-leading power density.

Read more...
MOSFET for automotive applications
Altron Arrow Power Electronics / Power Management
Infineon’s OptiMOS 7 100 V is offered in the company’s versatile and robust, high-current SSO8 5 x 6 mm2 SMD package.

Read more...