Power Electronics / Power Management


Generating very low voltages with standard regulators

30 September 2020 Power Electronics / Power Management

Question:

What is a good solution for generating a tiny DC supply voltage of a few hundred millivolts?

Answer:

All that is needed is a clean additional positive voltage to hook up to the feedback resistor of a DC-to-DC converter. Supply voltages for electronic components have been decreasing steadily over the last few years. The reason for this is the decreasing size of the geometrical structures in digital circuits such as microcontrollers, CPUs, DSPs and others. There are also applications in the measurement field that require low supply voltages.

For many years, linear regulators and switching regulators had a feedback voltage of approximately 1,2 V. This voltage was generated with a band gap circuit in a DC-to-DC converter IC, which determined the lowest voltage that could be set with an external resistive divider. By now, most modern voltage regulator ICs can generate output voltages of 0,8 V, 0,6 V or even 0,5 V. The internal voltage reference is designed in such a way that lower voltages are possible.


Figure 1. An LTC3822 DC-to-DC converter for generating low output voltages of 0,6 V or higher.

Figure 1 shows such a switching regulator, the LTC3822, which generates a feedback voltage of 0,6 V with a 0,6 V voltage reference.

However, if a supply voltage of less than 0,6 V is required, the circuit in Figure 1 cannot be used without further adjustments. With a trick, you can make a switching or linear regulator also generate lower voltages than the feedback voltage. This can be achieved by using circuits like the one shown in Figure 2.

It requires an additional positive supply voltage to which the resistive divider is connected for adjustment of the output voltage. This voltage can come from a low dropout (LDO) regulator or a voltage reference. The resistive divider thus forms a voltage divider in which the current flow IFB flows in a direction opposite to the normal case in Figure 1. In Figure 2, the current flows from the external reference voltage through the resistive divider to the output voltage.

Equation 1 shows the relationship between the feedback voltage of the IC (VFB), the desired output voltage (VOUT), the additional positive dc bias voltage (VOFFSET) and the resistors of the resistive divider R1 and R2.


The recommended values for the resistive divider are a total value of R1 plus R2 of between 100 kΩ and 500 kΩ. This keeps the bias current low enough in regard to power efficiency but high enough to prevent excessive noise from coupling into the sensitive feedback path.

This concept generally works well for generating voltages below the specified minimum voltage of a switching regulator or linear regulator. However, a few things should be considered. The additional voltage reference should be up and running before the DC-to-DC converter is switched on. If this auxiliary voltage is at 0 V or has a high impedance, the DC-to-DC converter might generate an excessively high voltage and damage the load circuit.

In the worst case scenario, in which the switching regulator is not yet switched on but the auxiliary voltage has already been applied, the current IFB through the resistive divider will charge the output capacitor to voltages above the set voltage. This can happen when the load has a very high impedance. It may be necessary to install a minimum load to avoid this.


Figure 2. Circuit of Figure 1 modified to generate output voltages of less than 0,6 V.

The accuracy of the auxiliary voltage at the resistive divider (1 V in Figure 2) contributes directly to the accuracy of the generated supply voltage. Thus, an especially clean voltage with low ripple should be used.

Additionally, not every voltage converter is suitable for this type of operation. For example, the measuring range of the current sense amplifier in a DC-to-DC converter might only provide for an operating range at higher voltages. It should also be noted that generating very low voltages at quite high input voltages requires a low duty cycle. Here, it might be helpful to choose a switching regulator IC with a short minimum on-time and to operate it at a low switching frequency.


Figure 3. A simulation tool such as LTspice from Analog Devices can be used for initial testing of the circuit.

For operating a linear regulator or switching regulator with lower output voltages than intended by the IC manufacturer, an initial check using a simulation tool such as LTspice from Analog Devices is useful. Figure 3 shows an LTC3822 circuit with an additional voltage source as a bias for the feedback path. In this circuit, an output voltage of 200 mV is generated. According to the data sheet, the LTC3822 is suitable for generating minimum output voltages of 0,6 V. In a circuit, the auxiliary voltage, voltage source V2 in Figure 3, could be implemented with an LDO regulator or a voltage reference. With the trick described here and thorough testing of the circuit, even lower output voltages can be generated.

About the author

Frederik Dostal studied microelectronics at the University of Erlangen in Germany. Starting work in the power management business in 2001, he has been active in various applications positions including four years in Phoenix, Arizona, where he worked on switch-mode power supplies. He joined Analog Devices in 2009 and works as a field applications engineer for power management at Analog Devices in München.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ryzen-based computer on module
Altron Arrow AI & ML
SolidRun announced the launch of its new Ryzen V3000 CX7 Com module, configurable with the eight-core/16-thread Ryzen Embedded V3C48 processor.

Read more...
Robust and customisable SBC
Altron Arrow DSP, Micros & Memory
Pairing the powerful i.MX8M Plus System on Module (SoM) from SolidRun, which features the i.MX 8M Plus SoC from NXP, this high-performance SBC is set to transform industrial environments.

Read more...
New family supports future cryptography
Altron Arrow DSP, Micros & Memory
NXP has introduced its new i.MX 94 family, which contains an i.MX MPU with an integrated time-sensitive networking (TSN) switch, enabling configurable, secure communications with rich protocol support in industrial and automotive environments.

Read more...
NXP’s all-purpose microcontroller series
Altron Arrow DSP, Micros & Memory
NXP has released its MCX A14x and A15x series of all-purpose microcontrollers which are part of the larger MCX portfolio that shares a common Arm Cortex-M33 core platform.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wine farm turns to solar installation for power
Current Automation Power Electronics / Power Management
Slanghoek Wine farm opted into a power purchase agreement to lower overall electricity costs and enter a true sustainable future, with a price-competitive edge on lower running costs.

Read more...
Industrial PSU family
Brabek Power Electronics / Power Management
The RACPRO1 family of PSUs supports a universal DC input voltage range from 430 to 850 V DC, allowing the parts to support renewable energy and microgrid applications.

Read more...
Integrated POL voltage regulators
EBV Electrolink Power Electronics / Power Management
Infineon’s TDA38807 and TDA38806 are their highest density high-efficiency integrated point-of-load (IPOL) solutions for smart enterprise systems.

Read more...
Low noise 3-axis MEMS accelerometers
Altron Arrow DSP, Micros & Memory
The ADXL357 and ADXL357B from Analog Devices are digital outputs, low noise density, low 0 g offset drift, low power, three-axis accelerometers with selectable measurement ranges.

Read more...