Smartcards have become ubiquitous in most areas of our day-to-day life. Here, Craig Reeves of TDK Semiconductor gives a quick rundown on the technology.
The contact smartcard is a small rectangular piece of plastic, similar in size/thickness and shape, to the very common bank debit/credit card. It is referred to by ISO as an ICC (integrated circuit card) and contains a gold connector, that has eight contacts, of which only six are required (contacts C4 and C8 are used for synchronous smartcards).
The term 'smart' comes from the fact that the card contains an embedded microprocessor which allows it to perform intelligent functions using different application programs, as opposed to a memory-based card, which is just used for storage. Contacts VCC (V V/3,3 V) and GND provide power to the card, RST is used to reset the card, VPP is a higher programming voltage required for EPROM memory programming (VPP is not required by EEPROM as it uses a charge pump on the chip itself to generate the programming voltage) and I/O is the serial 1 bit asynchronous half-duplex data interface. The physical layer 1 protocol used on I/O can be either T = 0 or T = 1. The T = 0 protocol (byte format) came along first followed by T = 1 (block format). The type of protocol used between smartcard and reader is negotiated during the protocol type selection (PTS) handshake. Smartcards that implement their own proprietary protocol, use the designation T = 14.
The contact type smartcards need to be inserted into a smartcard reader, which has a dedicated slot with contacts, that connect to C1-C8. The operations between contact smartcard and reader occur in the following order:
* Connection/activation of the contacts by the card reader.
* Card reset.
* Card acknowledges the reset.
* Information exchange between card and reader.
* Deactivation of the contacts by the card reader.
A contactless smartcard houses a small antenna coil, which is used for data transfer and powering of the embedded microprocessor. Combination smartcards have both interfaces.
Smartcard standards
The basic contact smartcard standard is the ISO 7816 series (Parts 1-10), of which the most relevant are parts 1-3.
* Part 1: Physical characteristics.
* Part 2: Dimension and location of contacts.
* Part 3: Electronic signals and transmission protocol.
The contactless cards are specified by ISO 14443.
There are also a number of other standards, which have been developed to ensure interoperability of smartcards and terminals used for specific functions. These include the payments associations of Europay, MasterCard and Visa EMV2000 standard (also known as EMV 4.0 and based on ISO 7816) enabling safe and secure banking, the CEPSCO CEPS (Common Electronic Purse Specification), PC/SC (Personal Computer/Smart Card) Workgroup PC/SC Specification 1.0, which is based on ISO 7816 and compatible with EMV and GSM standards and specifies application level interoperability and resource sharing - somewhat overlooked by the ISO 7816, EMV and GSM standards which are all very application-specific standards. MasterCard's SET (Secure Electronic Transaction) standard allowing safe Internet shopping, the ETSI GSM 11.11/11.12 standard (again based on ISO 7816) which specifies the mobile phone user's identification and authorisation using the SIM card, and OpenCard for its OpenCard Framework which details a specific architecture and set of APIs to improve compatibility between different smartcard hardware/software architectures. Of course, there are many more standards that I have not mentioned.
Smartcard applications
Initially, all smartcards issued were restricted to single applications, since once programmed and 'out in the field', these applications could not be changed. Also only one application could be resident on the card. Today, we can see examples of health cards, prepaid telephone cards, ID cards, banking and loyalty cards and cash cards. However, the next generation of smartcard, aptly called the 'lifestyle' card, will be a multifunction card, combining several applications (from different providers) on the same card. These applications can be removed/added and updated to change the functions of the card. This is due to the development of smartcard operating systems, which allow multiple applications to co-exist on the same card.
The three most popular smartcard operating systems are:
* MULTOS.
* JAVA CARD.
* Microsoft Windows card.
TDK Semiconductor offers a wide range of smartcard controllers.
Tel: | +27 11 458 9000 |
Email: | [email protected] |
www: | www.electrocomp.co.za |
Articles: | More information and articles about Electrocomp |
© Technews Publishing (Pty) Ltd | All Rights Reserved