Computer/Embedded Technology


10 issues to consider before installing industrial Ethernet - Part III

17 July 2002 Computer/Embedded Technology

After having a look at speed and distance issues in Part II, we now turn our attention to a consideration between hubs vs switches.

Some hubs and converters are shown here
Some hubs and converters are shown here

Repeating hubs

Modern Ethernet networks must be wired in a star topology utilising either twisted-pair or fibre-optic cabling. Links, consisting of only two devices, are established between a single Ethernet device and a port on a hub. Hubs are multiport devices usually capable of having 4, 8 or 12 ports. Hubs can be cascaded with a hub-to-hub connection.

Repeating hubs must conform to the requirements for IEEE-802.3 repeater units. These requirements include preamble regeneration, symmetry and amplitude compensation. Repeaters must re-time signals so that jitter, introduced by transceivers and cabling, does not accumulate over multiple segments. These devices detect runt packets and react to collisions by generating a JAM signal. They automatically partition jabbering ports to maintain network operability.

A point to remember: there is a limit to the number of hubs that can be cascaded. Ethernet's contention-based station arbitration method requires that all stations note if a collision has occurred on the network. The limit of this detection is called the collision domain, and it restricts the network's overall size. Exceeding the collision domain by introducing too many repeating hubs creates an unstable network with lost messages and generally poor performance. However, on a properly designed network, repeating hubs are simple to understand and use, not to mention very effective.

Repeating hubs have been criticised because they do not improve the determinism of Ethernet. With contention-based networks, such as Ethernet, it is impossible to predict the amount of time it takes for a station-to-station message when collisions occur since the backoff time is variable. A potential solution to this problem is to avoid collisions altogether.

Industrial automation systems frequently utilise master/slave protocols where a response from a slave only occurs after a command is initiated by the master. This type of protocol tends to limit collisions and thereby improves determinism. Repeating hubs will function quite well in this situation.

Media converters

Another class of physical devices are the media converters. Sometimes called transceivers, these devices convert one type of media to another. The most important conversion is from twisted-pair cable to fibre optics. Since some hubs do not have any fibre-optic ports, media converters are required in order to support fibre-optic cable in a network. Media converters should appear to the network as transparent devices. They are two-port devices that do not store frames or detect collisions. They only convert the signals sent over one medium to compatible signals over another.

Switching hubs

It is possible to replace repeating hubs with switching hubs and achieve higher network performance. Unlike repeating hubs, which are physical layer devices, the switching hub is actually a bridge that connects two data links together. By doing so, collision domains terminate at each switch port. Therefore, adding a switch doubles the possible geographic limit of the network. Switches can be cascaded for an even larger network.

Switches are much more complex than repeating hubs. Each twisted-pair port automatically negotiates with its attached device the data rate for that port, be it 10 or 100 Mbps. The flow control mechanism is also negotiated. For full-duplex segments, the PAUSE scheme is used. For half-duplex segments, the backpressure approach is used. The switch learns the port locations of Ethernet devices by reading complete Ethernet frames and observing source addresses. The switch then creates and maintains a table of source addresses and corresponding port assignments. From that time on, traffic is restricted to only those ports involved in a transmission. This allows for improved throughput since simultaneous transmissions can be initiated on those ports without activity. Table values are aged to automatically accommodate changes to field wiring.

If a broadcast, multicast or unicast transmission to an unknown destination is received on a port, all other ports are flooded with the transmission.

In Figure 1 we have the same identical network as the preceding example except that all the repeating hubs have been replaced by switching hubs. The result is that instead of one overall collision domain we have several collision domains allowing us to have a much greater overall network diameter. Within each collision domain you must follow the same rules as stated earlier. You could add repeating hubs connected to switch ports. You could also make it easy on yourself by only specifying switching hubs and not repeating hubs. If you do that, the maximum twisted-pair segment length remains at 100 m; however, switches can be cascaded with little concern. If you want the same flexibility using fibre optics, we need to address the half-/full-duplex issue first.

Figure 1. Because switches break the network into multiple collision domains, the physical size of the network is virtually unlimited
Figure 1. Because switches break the network into multiple collision domains, the physical size of the network is virtually unlimited

Repeating hub vs switching hub debate

From the above discussion it would seem like switching hubs are an all-round best choice over repeating hubs. However, repeating hubs have their advantages. Repeating hubs are simple to understand and you can connect a network analyser to any transmission. A 'flood' port on the switch is required in order to observe all traffic on the network. Switching hubs are bridges that store and forward complete Ethernet frames, creating a degree of data latency. Cascading switches aggravate the problem. Therefore, you can see that repeating hubs, as well as switching hubs, have their place with industrial Ethernet.

Part IV will continue in a subsequent issue (10 September, 2002) and will look at half-duplex and full-duplex issues.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Generate waveforms at 10 GS/s
Vepac Electronics Computer/Embedded Technology
New flagship arbitrary waveform generator cards from Spectrum Instrumentation generate waveforms with 2,5 GHz bandwidth and 16-bit vertical resolution.

Read more...
Quad-port 10GBASE-T controller
Rugged Interconnect Technologies Computer/Embedded Technology
he SN4-DJEMBE, available from Rugged Interconnect, is a networking adaptor card for CompactPCI Serial systems, equipped with four individual controllers for 10GBASE-T.

Read more...
HPE policy management platform
Computer/Embedded Technology
Duxbury Networking has announced the availability of the HPE Aruba ClearPass policy management platform, that enables business and personal devices to connect to an organisational level, in compliance with corporate security policies.

Read more...
IoT gateways
Brandwagon Distribution Computer/Embedded Technology
IoT Gateways are hardware and software devices that are responsible for collecting data from connected devices, managing communication between devices and the cloud, and processing and analysing the data before sending it to the cloud for further analysis.

Read more...
1.6T Ethernet IP solution to drive AI and hyperscale data centre chips
Computer/Embedded Technology
As artificial intelligence (AI) workloads continue to grow exponentially, and hyperscale data centres become the backbone of our digital infrastructure, the need for faster and more efficient communication technologies becomes imperative. 1.6T Ethernet will rapidly be replacing 400G and 800G Ethernet as the backbone of hyperscale data centres.

Read more...
Keeping it cool within the edge data centre
Computer/Embedded Technology
The creation of more data brings with it the corresponding need for more compute power and more data centres, which, in turn, can create unique challenges with regards to securing the environment and cooling the IT loads.

Read more...
NEX XON becomes Fortinet partner
NEC XON Computer/Embedded Technology
This designation demonstrates NEC XON’s ability to expertly deploy, operate, and maintain its own end-to-end security solutions, helping organisations to achieve digital acceleration.

Read more...
Online tool for data centre planning and design
Computer/Embedded Technology
Vertiv has unveiled a new tool, Vertiv Modular Designer Lite, designed to transform and simplify the configuration of prefabricated modular (PFM) data centres.

Read more...
Mission computer for HADES
Rugged Interconnect Technologies Computer/Embedded Technology
North Atlantic Industries’ latest product, the SIU34S, has been selected as the mission computer for the High Accuracy Detection and Exploitation System (HADES) program.

Read more...
14th Gen power to boost AI at the edge
Rugged Interconnect Technologies Computer/Embedded Technology
ADLINK’s inclusion of Intel’s 14th generation Core processors into its latest embedded boards and fanless computers is set to boost the AI and graphics capabilities.

Read more...