Power Electronics / Power Management


UPS battery configuration made easy

28 August 2019 Power Electronics / Power Management

Determining the UPS (uninterruptible power supply) battery configuration using a formula can be quite complicated and, since many users are not very familiar with it, a more simplified method can be used to speed up the process and thereby save time.

This is typically done in the pre-planning phase before designing the practical application solution. The battery configuration can be quickly and simply calculated based on the UPS output load and the required backup time. The formula is as follows:Required battery capacity (Ah) = UPS capacity (kVA) x 109 (Ah/cell) + kVA + number of battery blocks per group

Example 1

As an example, consider a 130 V d.c. system of 120 kVA operating a UPS with 32 cells in series per bank, and requiring a backup time of 60 minutes. The required battery capacity is:

120 kVA x 109 Ah (cell/kVA) = 13 080 Ah (total requirement)

13 080 Ah / 32≈409 Ah

Therefore, if using a 12 V, 100 Ah battery bank x 4, there is a choice between using 32 cells per group, in which case the actual backup time will be less than 60 minutes, or 33 cells per group, resulting in a backup time of slightly more than 60 minutes.

If the required backup time is 30 minutes, then:

120 x 109 = 13 080 Ah

13 080 / 32≈409 Ah (for 60 minutes)

409 / 2≈205 Ah

However, since the discharge power and discharge time of the battery are not linear, simply dividing by 2 is incorrect; rather, a modified coefficient must be used (see Table 1). Therefore, in this case, 205 x 1,23≈252 Ah, so one option could be 4 banks (32 cell/bank) of 12 V, 65 Ah battery.

If the backup time requirement is 20 minutes, then:

120 x 109 = 13 080 Ah

13 080 / 32≈409 Ah (for 60 minutes)

409 / 3≈136 Ah

136 x 1,41 (modified coefficient) 192 Ah

Therefore, one option could be 3 banks (32 cells/bank) of 12 V, 65 Ah batteries.

Example 2

Consider a 126 Ah/cell/kVA system, of 120 kVA UPS with 32 cells per bank. If the required backup time is more than one hour you also need to consider the modified coefficient in the calculation (see Table 2).

If the required backup time is 3 hours, then:

126 x 120 = 15 120 Ah

15 120 / 32≈472 Ah

472 x 3 = 1 416 Ah (for 3 hours)

Then divide it by a modified coefficient as 1 416 / 1,25≈1 133 Ah

The option of 4 banks of 12 V, 300 Ah batteries can therefore be selected.

According to the principle of energy conservation, the above method is the same for three-phase/single-phase or single-phase/single-phase UPS. Generally, high-power UPS systems are equipped with 32 batteries per battery pack and the number of parallel batteries should not exceed 4 so as not to affect the current sharing and charging effect of the battery pack.

However, the above is a simplified method that is only a rough calculation where the result which is not completely accurate. To obtain a more accurate result, one will also need to consider the parameters of the equipment, the requirements of the application, the power grid condition and the power conversion efficiency.

For more information contact Forbatt SA, +27 11 469 3598, [email protected], www.forbatt.co/index.php



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power efficiency and robustness in electronics design
Power Electronics / Power Management
Mouser Electronics recently announced a new eBook in collaboration with Analog Devices highlighting essential strategies for optimising power systems.

Read more...
USB Type-C-powered controllers
Future Electronics Power Electronics / Power Management
Diodes Incorporated has released two USB Type-C PD 3.1 extended power range sink controllers that can be embedded into battery-powered devices.

Read more...
Multicell battery monitoring
Altron Arrow Power Electronics / Power Management
The LTC6811 from Analog Devices is a multicell battery stack monitor that measures up to 12 series connected battery cells with a total measurement error of less than 1,2 mV.

Read more...
Full telemetry in tiny DC-DC converters
RS South Africa Power Electronics / Power Management
The FS160* series of µPOL DC-DC converters from TDK all offer full telemetry, provide increased performance, and are remarkable for extraordinary power density in the smallest sizes.

Read more...
Power IC supplies 1650 W
EBV Electrolink Power Electronics / Power Management
Power Integrations has announced a two-fold increase in power output from the HiperLCS-2 chipset with the new device now being able to deliver up to 1650 W of continuous output power.

Read more...
High-voltage step-down DC-DC converter
Altron Arrow Power Electronics / Power Management
The MAX17793 is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over an input voltage range of 3 to 80 V.

Read more...
High-voltage contactors
RS South Africa Power Electronics / Power Management
TDK Corporation has announced two new additions to its high-voltage contactor portfolio for harsh environments: the HVC43MC with integrated mirror contact and the HVC45 with enhanced short-circuit current handling capability.

Read more...
Chokes rated at 36 A
RS South Africa Power Electronics / Power Management
TDK Corporation has launched the EPCOS SurfIND series, a new range of current-compensated ring core double chokes for high currents and surface mounting.

Read more...
RF arrestor provides robust protection
RFiber Solutions Power Electronics / Power Management
NexTek’s range of coaxial RF surge and lightning arrestors are designed and built to provide robust protection for any radio or coaxial RF transmission application.

Read more...
Wide-Bandgap Developer Forum 2025
Power Electronics / Power Management
To give designers the ultimate in design flexibility, the entire range of WBG power semiconductors will be provided including discretes, modules, and highly integrated solutions ranging from 40 V to 700 V for GaN and 400 V to 3,3 kV for SiC.

Read more...