Telecoms, Datacoms, Wireless, IoT


TraX invests in RF and high-speed digital PCB capability

15 August 2018 Telecoms, Datacoms, Wireless, IoT

As technology advances annually, so do the laminates and materials used in the manufacture of printed circuit boards. These new laminates each bring different challenges during the manufacturing process due to their chemical composition and the specialised electrical properties they are designed to achieve. Many of these laminates require special processing and special equipment, especially the PTFE low-loss materials utilised in radar and RF applications. The modern challenges involved have led TraX Interconnect to add an MEC V-Bond process to its list of capabilities.

“Working with these new laminates and materials, particularly when it comes to soldermask application and innerlayer bonding, has meant investing in the new generation of chemical adhesion promoters,” explains TraX managing director, Daniel Dock. “In high-frequency printed circuit boards the surface roughness of the copper surface becomes an important factor affecting performance of the finished board. Current adhesion promoting treatments leave a surface that is too rough for high-frequency signals.”

Traditionally as part of the manufacturing process of a printed circuit board, a polymer ink (soldermask), most often green in colour, is applied to the circuit board to cover the copper traces of the circuit that do not require soldering. The purpose of the soldermask is to provide an electrically non-conductive, protective layer over the copper traces that make up the electronic circuit. Failure to protect these traces will result in oxidation of the copper and cause damage to the circuit.

If the surface of the copper traces being covered by soldermask is not suitably prepared then the soldermask will peel off and not stick to the copper surface. This can be equated to traditional surface preparation of most surfaces prior to painting.

“In printed circuit board manufacturing, much like painting preparation, we used to rely on abrading of the surface to be covered by soldermask,” Dock continues. “This was done by passing the printed circuit boards through conveyorised equipment containing round abrasive rollers that press down on the board surface as they pass between them. This can be compared to sanding before painting, with the resultant fine scratches in the copper surface making it possible for the soldermask to stick.

“The problem with this process is that the scratches on the copper traces are a problem in boards manufactured to operate at high frequencies, since these scratches affect the signals running at high speed across them. By implementing this new surface treatment at TraX we will be able to ensure that we provide sufficient adhesion for solder mask whilst leaving the copper surface as smooth as possible.”

Dock concludes by saying he is confident this new process puts TraX in a better position to manufacture boards for radar, aerospace and military applications where controlled impedance and high frequencies are critical factors.

For more information contact TraX Interconnect, +27 21 712 5011, [email protected], www.trax.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved