Manufacturing / Production Technology, Hardware & Services


Conformal coating process control and inspection

EMP 2017 Electronics Manufacturing & Production Handbook Manufacturing / Production Technology, Hardware & Services

There is definitely an increasing interest in conformal coating for electronics, based on recent workshop and seminars run by the SMART Group in the UK and other organisations worldwide. I recently rekindled my interest and knowledge on the subject for a workshop session at SMT Nuremberg. Things have moved on a long way since my time as an apprentice using brush and manual spray coating techniques within GEC. Producing operator instructions and inspection criteria for the number of brush hairs allowed in a coating seems like a lifetime ago.

Simple process control checks can be invaluable during conformal coating. These may vary depending on the type of product, material, volume, application and design density. Some of the most common process defects are shown in Figure 1. Checking the wet coating thickness on the surface of the board after application, or alternatively on a blank panel, will make measurement simpler. Using a wet depth gauge, check the coating in two or three areas on a sample board, and ideally check more than one sample in a batch. Record the reading, location, material and process parameters for future reference.

Coating a blank test board prior to running production or using a proprietary matrix test card like that used by Nordson ASYMTEK is a good way of checking spray process parameters (Figure 2). The test board or card can be inspected with a long-wave UV light for coating definition, overspray or coating run-on. Process parameters like solids content, temperature, nozzle type, speed, height and pressure can be recorded with the sample and retained for reference.

Figure 2. A test card from Nordson, shown with and without UV light illumination on spray patterns.
Figure 2. A test card from Nordson, shown with and without UV light illumination on spray patterns.

Measuring dry coating can be performed on a test label applied to the surface of a board prior to coating. The thickness of the dry label can be recorded prior to coating; subtracting the thickness of the label provides the coating thickness in that location. The label can be retained for future reference and is ideal for engineers to review during process audits. Digital thickness measuring systems are available for logging data for SPC.

With care, coated boards can be examined directly after spray coating using a UV light source on an outfeed conveyor. Care needs to be taken to avoid contamination and disturbance of the coating. Surface contamination with hairs, fibres or other particulate can be a problem with a delay before curing. Recent introduction of automatic optical inspection (AOI) specifically designed for coated boards can be used as off-line or in-line inspection with software which has been specifically developed for coating defects.

When coated boards are cured in a convection or IR oven the temperature profile must be established based on the material supplier’s recommendations. The profile must also be considered in relation to the coating thickness. Temperature profiling procedures should follow the techniques used for reflow soldering with the correct attachment of thermocouples. Attempts to speed up the curing cycle is a common cause of failures.

Inspect sample boards under UV lighting for complete coating coverage. Check areas of the board after removal of any masking for contamination or lifting of the coating at the masking interface. The coating should be compared with any work instructions, alternatively a golden coated board assembly should be available for reference. Obviously in high volume is where AOI systems will have an impact in the future.

During sample inspection of boards all defects and touch-up of the coating must be recorded for future review. Inspection should be based on documented inspection criteria or customer specification. Where new defects or PCB design specific issues are seen they should be photographed and added to inspection criteria, training updates or included with customer specific instructions.

Figure 3. Conformal coating charts are available from <a href="http://www.bobwillis.co.uk" target="_blank">www.bobwillis.co.uk</a>
Figure 3. Conformal coating charts are available from www.bobwillis.co.uk

Having images of common process defects and examples of satisfactory coating (see Figure 3) to include in PowerPoint training modules or for onsite work instructions is an ideal resource for process and quality engineers tasked with training sessions.

For more information visit www.bobwillis.co.uk





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Optimising cleaning products used in electronics manufacturing
Manufacturing / Production Technology, Hardware & Services
IPC, in collaboration with ChemFORWARD, are hosting a webinar titled ‘Optimising Cleaning Products Used in Electronics Manufacturing’.

Read more...
Webinar: Rapidly create vision-based edge AI solutions
Manufacturing / Production Technology, Hardware & Services
This webinar will give attendees an overview of the development kit, and will teach how it can be leveraged with Avnet’s IoTConnect platform, to rapidly develop cloud-connected solutions.

Read more...
Webinar: End-to-end ML model development
Manufacturing / Production Technology, Hardware & Services
Whether attendees are just starting out, or looking to refine their existing skills, this webinar is the next step to becoming proficient in creating machine learning models that solve real-world problems.

Read more...
PCBWay: Your one-stop shop for electronics manufacturing from design to production
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] PCBWay has a long history of providing manufacturing support and design advice based on our customers’ products, and we continue to provide our customers with printed circuit boards, components, PCB assembly, moulding services, electronic assemblies, contract manufacturing, etc., from design to mass production.

Read more...
Yamaha accelerates transition to next-gen vehicle lighting
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Europe’s automotive lighting makers are moving away from traditional electrical production techniques to become high-speed, precision electronic assemblers.

Read more...
Eight ways temporary solder mask is used for electronic assembly
Testerion Editor's Choice Manufacturing / Production Technology, Hardware & Services
While it is most used to mask open vias in a wave soldering process, operators find all kinds of creative ways to use solder mask to solve process challenges.

Read more...
Smart AOI provides essential inspection
Testerion Manufacturing / Production Technology, Hardware & Services
TRI has introduced the Core Features 3D AOI, the TR7700QC SII, which is equipped with essential inspection functionalities tailored for the electronics manufacturing industry.

Read more...
Newest mounter designed for the autonomous factory
Techmet Manufacturing / Production Technology, Hardware & Services
Panasonic has now started accepting orders for its newest modular mounter NPM-GW. This mounter is designed to enhance production lines with the end goal of having a fully functioning autonomous factory.

Read more...
Autonomous labour-saving factory solution
Techmet Manufacturing / Production Technology, Hardware & Services
With predictive and targeted maintenance options to maximise uptime, the NPM-GH from Panasonic is the first step to a truly autonomous factory.

Read more...
Easy-PC celebrates 40 years in PCB design
Manufacturing / Production Technology, Hardware & Services
Number One Systems celebrates 40 years of success with the release of its latest update, Easy-PC Version 28, featuring more than 40 new enhancements.

Read more...